A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding (original) (raw)
Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin.63, 11–30 (2013). Article Google Scholar
Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med.343, 78–85 (2000). ArticleCAS Google Scholar
Eeles, R.A. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet.45, 385–391 (2013). ArticleCAS Google Scholar
Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA106, 9362–9367 (2009). ArticleCAS Google Scholar
Freedman, M.L. et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat. Genet.43, 513–518 (2011). ArticleCAS Google Scholar
Ward, L.D. & Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol.30, 1095–1106 (2012). ArticleCAS Google Scholar
Cowper-Sal lari, R. et al. Breast cancer risk–associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat. Genet.44, 1191–1198 (2012). ArticleCAS Google Scholar
Schödel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet.44, 420–425 (2012). Article Google Scholar
Economides, K.D. & Capecchi, M.R. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development130, 2061–2069 (2003). ArticleCAS Google Scholar
Kim, Y.R. et al. HOXB13 downregulates intracellular zinc and increases NF-κB signaling to promote prostate cancer metastasis. Oncogenedoi:10.1038/onc.2013.404 (7 October 2013). ArticleCAS Google Scholar
Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol.10, R130 (2009). Article Google Scholar
Ewing, C.M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med.366, 141–149 (2012). ArticleCAS Google Scholar
Gudmundsson, J. et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat. Genet.44, 1326–1329 (2012). ArticleCAS Google Scholar
Xu, J. et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum. Genet.132, 5–14 (2013). ArticleCAS Google Scholar
Takata, R. et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet.42, 751–754 (2010). ArticleCAS Google Scholar
Haiman, C.A. et al. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet.7, e1001387 (2011). ArticleCAS Google Scholar
Lindström, S. et al. Replication of five prostate cancer loci identified in an Asian population—results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol. Biomarkers Prev.21, 212–216 (2012). Article Google Scholar
Long, Q.Z. et al. Replication and fine mapping for association of the C2orf43, FOXP4, GPRC6A and RFX6 genes with prostate cancer in the Chinese population. PLoS ONE7, e37866 (2012). ArticleCAS Google Scholar
Wang, M. et al. Replication and cumulative effects of GWAS-identified genetic variations for prostate cancer in Asians: a case-control study in the ChinaPCa consortium. Carcinogenesis33, 356–360 (2012). Article Google Scholar
Xu, J. et al. Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat. Genet.44, 1231–1235 (2012). ArticleCAS Google Scholar
Wei, G.H. et al. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J.29, 2147–2160 (2010). ArticleCAS Google Scholar
Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell124, 47–59 (2006). ArticleCAS Google Scholar
Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell152, 327–339 (2013). ArticleCAS Google Scholar
Grant, C.E., Bailey, T.L. & Noble, W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics27, 1017–1018 (2011). ArticleCAS Google Scholar
Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol.2, 28–36 (1994). CAS Google Scholar
Creyghton, M.P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA107, 21931–21936 (2010). ArticleCAS Google Scholar
Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39, 311–318 (2007). ArticleCAS Google Scholar
Gaulton, K.J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet.42, 255–259 (2010). ArticleCAS Google Scholar
Simon, J.M., Giresi, P.G., Davis, I.J. & Lieb, J.D. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat. Protoc.7, 256–267 (2012). ArticleCAS Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012).
Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature489, 75–82 (2012). ArticleCAS Google Scholar
Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell132, 311–322 (2008). ArticleCAS Google Scholar
He, H.H. et al. Nucleosome dynamics define transcriptional enhancers. Nat. Genet.42, 343–347 (2010). ArticleCAS Google Scholar
Yu, J. et al. An integrated network of androgen receptor, polycomb, and _TMPRSS2_-ERG gene fusions in prostate cancer progression. Cancer Cell17, 443–454 (2010). ArticleCAS Google Scholar
Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature487, 239–243 (2012). ArticleCAS Google Scholar
Tamura, K. et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res.67, 5117–5125 (2007). ArticleCAS Google Scholar
Taylor, B.S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell18, 11–22 (2010). ArticleCAS Google Scholar
Smith, S.B. et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature463, 775–780 (2010). ArticleCAS Google Scholar
Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell8, 393–406 (2005). ArticleCAS Google Scholar
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov.2, 401–404 (2012). Article Google Scholar
Szulkin, R. et al. Prostate cancer risk variants are not associated with disease progression. Prostate72, 30–39 (2012). ArticleCAS Google Scholar
Akbari, M.R. et al. Association between germline HOXB13 G84E mutation and risk of prostate cancer. J. Natl. Cancer Inst.104, 1260–1262 (2012). ArticleCAS Google Scholar
Laitinen, V.H. et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev.22, 452–460 (2013). ArticleCAS Google Scholar
Wasserman, N.F., Aneas, I. & Nobrega, M.A. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res.20, 1191–1197 (2010). ArticleCAS Google Scholar
Sotelo, J. et al. Long-range enhancers on 8q24 regulate c-Myc. Proc. Natl. Acad. Sci. USA107, 3001–3005 (2010). ArticleCAS Google Scholar
Zhang, X., Cowper-Sallari, R., Bailey, S.D., Moore, J.H. & Lupien, M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res.22, 1437–1446 (2012). ArticleCAS Google Scholar
Imbeaud, S. et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res.33, e56 (2005). Article Google Scholar
Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med.15, 559–565 (2009). ArticleCAS Google Scholar
Korn, J.M. et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet.40, 1253–1260 (2008). ArticleCAS Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009). ArticleCAS Google Scholar
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9, R137 (2008). Article Google Scholar
Tuupanen, S. et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat. Genet.41, 885–890 (2009). ArticleCAS Google Scholar