Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases (original) (raw)

References

  1. Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).
    Article CAS PubMed Google Scholar
  2. Parkes, M., Cortes, A., van Heel, D.A. & Brown, M.A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).
    Article CAS PubMed Google Scholar
  3. Trowsdale, J. & Knight, J.C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  4. Thursz, M.R., Thomas, H.C., Greenwood, B.M. & Hill, A.V. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat. Genet. 17, 11–12 (1997).
    Article CAS PubMed Google Scholar
  5. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).
    Article CAS PubMed Google Scholar
  6. Penn, D.J., Damjanovich, K. & Potts, W.K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. USA 99, 11260–11264 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  7. Savage, A.E. & Zamudio, K.R. MHC genotypes associate with resistance to a frog-killing fungus. Proc. Natl. Acad. Sci. USA 108, 16705–16710 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  8. Dean, M., Carrington, M. & O'Brien, S.J. Balanced polymorphism selected by genetic versus infectious human disease. Annu. Rev. Genomics Hum. Genet. 3, 263–292 (2002).
    Article CAS PubMed Google Scholar
  9. Lipsitch, M., Bergstrom, C.T. & Antia, R. Effect of human leukocyte antigen heterozygosity on infectious disease outcome: the need for allele-specific measures. BMC Med. Genet. 4, 2 (2003).
    Article PubMed PubMed Central Google Scholar
  10. Woelfing, B., Traulsen, A., Milinski, M. & Boehm, T. Does intra-individual major histocompatibility complex diversity keep a golden mean? Phil. Trans. R. Soc. Lond. B 364, 117–128 (2009).
    Article Google Scholar
  11. Tsai, S. & Santamaria, P. MHC class II polymorphisms, autoreactive T-cells and autoimmunity. Front. Immunol. 4, 321 (2013).
    Article PubMed PubMed Central CAS Google Scholar
  12. Goyette, P. et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  13. Wordsworth, P. et al. HLA heterozygosity contributes to susceptibility to rheumatoid arthritis. Am. J. Hum. Genet. 51, 585–591 (1992).
    CAS PubMed PubMed Central Google Scholar
  14. Thomson, G. et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 70, 110–127 (2007).
    Article CAS PubMed Google Scholar
  15. Koeleman, B.P.C. et al. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun. 5, 381–388 (2004).
    Article CAS PubMed Google Scholar
  16. Wilkie, A.O. The molecular basis of genetic dominance. J. Med. Genet. 31, 89–98 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  17. Gjuvsland, A.B., Plahte, E., Ådnøy, T. & Omholt, S.W. Allele interaction—single locus genetics meets regulatory biology. PLoS ONE 5, e9379 (2010).
    Article PubMed PubMed Central CAS Google Scholar
  18. Lenz, T.L. Computational prediction of MHC II–antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution 65, 2380–2390 (2011).
    Article PubMed Google Scholar
  19. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  20. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  21. Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94, 522–532 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  22. Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 888–905 (2015).
    Article CAS Google Scholar
  23. Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  24. Gockel, I. et al. Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia. Nat. Genet. 46, 901–904 (2014).
    Article CAS PubMed Google Scholar
  25. Gutierrez-Achury, J. et al. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease. Nat. Genet. 47, 577–578 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  26. Rich, S.S. et al. The Type 1 Diabetes Genetics Consortium. Ann. NY Acad. Sci. 1079, 1–8 (2006).
    Article CAS PubMed Google Scholar
  27. de Bakker, P.I.W. & Raychaudhuri, S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum. Mol. Genet. 21, R29–R36 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  28. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  29. Balding, D.J., Bishop, M.J. & Cannings, C. Handbook of Statistical Genetics (John Wiley & Sons, 2007).
  30. Wray, N.R. & Goddard, M.E. Multi-locus models of genetic risk of disease. Genome Med. 2, 10 (2010).
    Article PubMed PubMed Central Google Scholar
  31. Stahl, E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  32. de Bakker, P.I.W. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  33. Clop, A. et al. An in-depth characterization of the major psoriasis susceptibility locus identifies candidate susceptibility alleles within an HLA-C enhancer element. PLoS ONE 8, e71690 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  34. Gregersen, P.K., Silver, J. & Winchester, R.J. The shared epitope hypothesis. an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).
    Article CAS PubMed Google Scholar
  35. Holoshitz, J. The rheumatoid arthritis HLA-DRB1 shared epitope. Curr. Opin. Rheumatol. 22, 293–298 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  36. MacGregor, A., Ollier, W., Thomson, W., Jawaheer, D. & Silman, A. HLA-DRB1*0401/0404 genotype and rheumatoid arthritis: increased association in men, young age at onset, and disease severity. J. Rheumatol. 22, 1032–1036 (1995).
    CAS PubMed Google Scholar
  37. Megiorni, F. & Pizzuti, A. HLA-DQA1 and HLA-DQB1 in celiac disease predisposition: practical implications of the HLA molecular typing. J. Biomed. Sci. 19, 88 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  38. Vader, W. et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl. Acad. Sci. USA 100, 12390–12395 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  39. Monsuur, A.J. et al. Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS ONE 3, e2270 (2008).
    Article PubMed PubMed Central CAS Google Scholar
  40. Wood, A.R. et al. Another explanation for apparent epistasis. Nature 514, E3–E5 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  41. Klareskog, L., Lundberg, K. & Malmström, V. in Advances in Immunology Vol. 118 (ed. Frederick, W.A.) 129–158 (Academic Press, 2013).
  42. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  43. Vadheim, C.M., Rotter, J.I., Maclaren, N.K., Riley, W.J. & Anderson, C.E. Preferential transmission of diabetic alleles within the HLA gene complex. N. Engl. J. Med. 315, 1314–1318 (1986).
    Article CAS PubMed Google Scholar
  44. Sasaki, T., Nemoto, M., Yamasaki, K. & Tajima, N. Preferential transmission of maternal allele with DQA1*0301-DQB1*0302 haplotype to affected offspring in families with type 1 diabetes. J. Hum. Genet. 44, 318–322 (1999).
    Article CAS PubMed Google Scholar
  45. Bronson, P.G., Ramsay, P.P., Thomson, G., Barcellos, L.F. & Diabetes Genetics Consortium. Analysis of maternal-offspring HLA compatibility, parent-of-origin and non-inherited maternal effects for the classical HLA loci in type 1 diabetes. Diabetes Obes. Metab. 11, 74–83 (2009).
    Article PubMed PubMed Central Google Scholar
  46. Miyadera, H. et al. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J. Clin. Invest. 125, 275–291 (2015).
    Article PubMed Google Scholar
  47. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  48. So, H.-C., Gui, A.H.S., Cherny, S.S. & Sham, P.C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet. Epidemiol. 35, 310–317 (2011).
    Article PubMed Google Scholar
  49. Witte, J.S., Visscher, P.M. & Wray, N.R. The contribution of genetic variants to disease depends on the ruler. Nat. Rev. Genet. 15, 765–776 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  50. Kwan, S.H., Purcell, S. & Sham, P.C. in Statistical Genetics: Gene Mapping through Linkage and Association (eds. Neale, B.M., Ferreira, M.A.R., Medland, S.E. & Posthuma, D.) 17–42 (Taylor & Francis, 2007).
  51. Okada, Y. et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23, 6916–6926 (2014).
    Article CAS PubMed PubMed Central Google Scholar

Download references

Acknowledgements

This project was supported by grants from the German Research Foundation (DFG; LE 2593/1-1 and LE 2593/2-1 (T.L.L.), GO 1795/1-1 (I.G.), KN 378/2-1 (M.K.) and SCHU 1596/5-1 (J.S.)), by grants from the US National Institutes of Health (1R01AR062886 (P.I.W.d.B.), R01AR065183 (J.T.E.), 1R01AR063759-01A1 (S.R.), 5U01GM092691 (S.R.) and 1UH2AR067677-01 (S.R.)), by the IMI (European Union)–funded program BTCure (L.K.) and by the Netherlands Organization for Scientific Research (Vernieuwingsimpuls VIDI Award NWO project 016.126.354 (P.I.W.d.B.)). Sample collection for J.M. was supported by a grant from the Instituto de Salud Carlos III (RD12/0009). M.M.N. received support for this work from the Alfried Krupp von Bohlen und Halbach-Stiftung and is a member of the DFG-funded Excellence Cluster ImmunoSensation.

Author information

Author notes

  1. Tobias L Lenz and Aaron J Deutsch: These authors contributed equally to this work.

Authors and Affiliations

  1. Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
    Tobias L Lenz, Aaron J Deutsch, Buhm Han, Xinli Hu, Yukinori Okada, Shamil R Sunyaev & Soumya Raychaudhuri
  2. Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
    Tobias L Lenz, Aaron J Deutsch, Buhm Han, Xinli Hu, Yukinori Okada, Shamil R Sunyaev & Soumya Raychaudhuri
  3. Department of Evolutionary Ecology, Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
    Tobias L Lenz
  4. Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
    Aaron J Deutsch, Buhm Han, Xinli Hu, Yukinori Okada & Soumya Raychaudhuri
  5. Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA
    Aaron J Deutsch, Buhm Han, Xinli Hu, Yukinori Okada & Soumya Raychaudhuri
  6. Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
    Aaron J Deutsch, Buhm Han, Xinli Hu, Yukinori Okada, Shamil R Sunyaev & Soumya Raychaudhuri
  7. Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts, USA
    Aaron J Deutsch & Xinli Hu
  8. Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
    Buhm Han
  9. Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
    Yukinori Okada
  10. Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    Yukinori Okada
  11. Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
    Stephen Eyre, Jane Worthington & Soumya Raychaudhuri
  12. National Institute for Health Research (NIHR) Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
    Stephen Eyre & Jane Worthington
  13. Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
    Michael Knapp
  14. Genetics Department, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
    Alexandra Zhernakova, Javier Gutierrez-Achury & Cisca Wijmenga
  15. Department of Rheumatology, Leiden University Medical Centre, Leiden, the Netherlands
    Tom W J Huizinga
  16. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
    Gonçalo Abecasis & Lam C Tsoi
  17. Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
    Gonçalo Abecasis & Lam C Tsoi
  18. Institute of Human Genetics, University of Bonn, Bonn, Germany
    Jessica Becker, Markus M Nöthen & Johannes Schumacher
  19. Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
    Jessica Becker, Markus M Nöthen & Johannes Schumacher
  20. Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
    Guy E Boeckxstaens & Mira M Wouters
  21. Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
    Wei-Min Chen, Suna Onengut-Gumuscu & Stephen S Rich
  22. Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Andre Franke
  23. Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
    Dafna D Gladman
  24. Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
    Dafna D Gladman
  25. Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
    Dafna D Gladman
  26. Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
    Ines Gockel
  27. Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
    Javier Martin
  28. Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
    Rajan P Nair, Philip E Stuart & James T Elder
  29. Department of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
    Proton Rahman
  30. Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
    Solbritt Rantapää-Dahlqvist
  31. Department of Rheumatology, Umeå University, Umeå, Sweden
    Solbritt Rantapää-Dahlqvist
  32. Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
    David A van Heel
  33. Department of Medicine, Rheumatology Unit, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
    Lars Klareskog & Soumya Raychaudhuri
  34. Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
    James T Elder
  35. Feinstein Institute for Medical Research, North Shore–Long Island Jewish Health System, Manhasset, New York, USA
    Peter K Gregersen
  36. Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
    Paul I W de Bakker
  37. Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands
    Paul I W de Bakker

Authors

  1. Tobias L Lenz
  2. Aaron J Deutsch
  3. Buhm Han
  4. Xinli Hu
  5. Yukinori Okada
  6. Stephen Eyre
  7. Michael Knapp
  8. Alexandra Zhernakova
  9. Tom W J Huizinga
  10. Gonçalo Abecasis
  11. Jessica Becker
  12. Guy E Boeckxstaens
  13. Wei-Min Chen
  14. Andre Franke
  15. Dafna D Gladman
  16. Ines Gockel
  17. Javier Gutierrez-Achury
  18. Javier Martin
  19. Rajan P Nair
  20. Markus M Nöthen
  21. Suna Onengut-Gumuscu
  22. Proton Rahman
  23. Solbritt Rantapää-Dahlqvist
  24. Philip E Stuart
  25. Lam C Tsoi
  26. David A van Heel
  27. Jane Worthington
  28. Mira M Wouters
  29. Lars Klareskog
  30. James T Elder
  31. Peter K Gregersen
  32. Johannes Schumacher
  33. Stephen S Rich
  34. Cisca Wijmenga
  35. Shamil R Sunyaev
  36. Paul I W de Bakker
  37. Soumya Raychaudhuri

Contributions

T.L.L., A.J.D., S.R., P.I.W.d.B. and S.R.S. conceived the study, coordinated the study and wrote the initial version of the manuscript. T.L.L., A.J.D., S.R., B.H., X.H., Y.O., P.I.W.d.B. and S.R.S. contributed to the study design and analysis strategy. T.L.L., A.J.D. and S.R. conducted all analyses. The following authors organized and contributed subject samples and provided SNP genotype data: S.E., T.W.J.H., L.K., J.M., S.R.-D., J.W. and P.K.G. (rheumatoid arthritis); W.-M.C., S.O.-G. and S.S.R. (T1D); G.A., A.F., D.D.G., R.P.N., P.R., P.E.S., L.C.T. and J.T.E. (psoriasis); J.G.-A., D.A.v.H., A.Z. and C.W. (celiac disease); and J.B., G.E.B., I.G., M.K., M.M.N., M.M.W. and J.S. (achalasia). The following authors contributed to critical writing and review of the manuscript: X.H., D.A.v.H., M.K., S.E., S.S.R., L.K., A.Z., C.W., Y.O. and T.W.J.H. All authors contributed to the final manuscript.

Corresponding authors

Correspondence toPaul I W de Bakker or Soumya Raychaudhuri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Lenz, T., Deutsch, A., Han, B. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases.Nat Genet 47, 1085–1090 (2015). https://doi.org/10.1038/ng.3379

Download citation