Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321, 1801–1806 (2008). ArticleCASPubMedPubMed Central Google Scholar
Collisson, E.A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med.17, 500–503 (2011). ArticleCASPubMedPubMed Central Google Scholar
Crnogorac-Jurcevic, T. et al. Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene21, 4587–4594 (2002). ArticleCASPubMed Google Scholar
Witkiewicz, A.K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun.6, 6744 (2015). ArticleCASPubMed Google Scholar
Iacobuzio-Donahue, C.A. et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am. J. Pathol.162, 1151–1162 (2003). ArticleCASPubMedPubMed Central Google Scholar
Logsdon, C.D. et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res.63, 2649–2657 (2003). CASPubMed Google Scholar
Stuart, R.O. et al. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc. Natl. Acad. Sci. USA101, 615–620 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. In silico estimates of tissue components in surgical samples based on expression profiling data. Cancer Res.70, 6448–6455 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun.4, 2612 (2013). ArticleCASPubMed Google Scholar
Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep.3, 246–259 (2013). ArticleCASPubMedPubMed Central Google Scholar
Biton, A. et al. Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. Cell Rep.9, 1235–1245 (2014). ArticleCASPubMed Google Scholar
Stratford, J.K. et al. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med.7, e1000307 (2010). ArticleCASPubMedPubMed Central Google Scholar
Whitfield, M.L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell13, 1977–2000 (2002). ArticleCASPubMedPubMed Central Google Scholar
Froeling, F.E. et al. Retinoic acid—induced pancreatic stellate cell quiescence reduces paracrine Wnt–β-catenin signaling to slow tumor progression. Gastroenterology141, 1486–1497 (2011). ArticleCASPubMed Google Scholar
Özdemir, B.C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell25, 719–734 (2014). ArticleCASPubMedPubMed Central Google Scholar
Rhim, A.D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell25, 735–747 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lee, J.J. et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl. Acad. Sci. USA111, E3091–E3100 (2014). ArticleCASPubMedPubMed Central Google Scholar
Olive, K.P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). ArticleCASPubMedPubMed Central Google Scholar
Erkan, M. et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol.6, 1155–1161 (2008). ArticlePubMed Google Scholar
Cohen, S.J. et al. Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas37, 154–158 (2008). ArticleCASPubMed Google Scholar
Vonlaufen, A. et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res.68, 2085–2093 (2008). ArticleCASPubMed Google Scholar
Herrera, M. et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin. Cancer Res.19, 5914–5926 (2013). ArticleCASPubMed Google Scholar
Nones, K. et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int. J. Cancer135, 1110–1118 (2014). ArticleCASPubMed Google Scholar
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature507, 315–322 (2014).
Damrauer, J.S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl. Acad. Sci. USA111, 3110–3115 (2014). ArticleCASPubMedPubMed Central Google Scholar
McConkey, D.J., Choi, W. & Dinney, C.P. New insights into subtypes of invasive bladder cancer: considerations of the clinician. Eur. Urol.67, e76–e78 (2015). ArticlePubMed Google Scholar
Parker, J.S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol.27, 1160–1167 (2009). ArticlePubMedPubMed Central Google Scholar
Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res.12, R68 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA99, 6567–6572 (2002). ArticleCASPubMedPubMed Central Google Scholar
Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet.47, 312–319 (2015). ArticleCASPubMed Google Scholar
Rubio-Viqueira, B. et al. An in vivo platform for translational drug development in pancreatic cancer. Clin. Cancer Res.12, 4652–4661 (2006). ArticleCASPubMed Google Scholar
Stolze, B., Reinhart, S., Bulllinger, L., Fröhling, S. & Scholl, C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci. Rep.5, 8535 (2015). ArticleCASPubMedPubMed Central Google Scholar
Ihle, N.T. et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J. Natl. Cancer Inst.104, 228–239 (2012). ArticleCASPubMedPubMed Central Google Scholar
Carey, L., Winer, E., Viale, G., Cameron, D. & Gianni, L. Triple-negative breast cancer: disease entity or title of convenience? Nat. Rev. Clin. Oncol.7, 683–692 (2010). ArticlePubMed Google Scholar
Bardeesy, N. et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev.20, 3130–3146 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haeger, S.M. et al. Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors. Oncogene 10.1038/onc.2015.112 (20 April 2015).
Garrido-Laguna, I. et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res.17, 5793–5800 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dal Molin, M. et al. Very long-term survival following resection for pancreatic cancer is not explained by commonly mutated genes: results of whole-exome sequencing analysis. Clin. Cancer Res.21, 1944–1950 (2015). ArticleCASPubMed Google Scholar
Zhang, Y. et al. A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nat. Genet.40, 862–870 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhong, Y. et al. GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1. PLoS ONE6, e22129 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wamunyokoli, F.W. et al. Expression profiling of mucinous tumors of the ovary identifies genes of clinicopathologic importance. Clin. Cancer Res.12, 690–700 (2006). ArticleCASPubMed Google Scholar
Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature448, 807–810 (2007). ArticleCASPubMed Google Scholar
Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res.42, D472–D477 (2014). ArticleCASPubMed Google Scholar
Bild, A.H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature439, 353–357 (2006). ArticleCASPubMed Google Scholar
Nishimura, D. BioCarta. Biotech. Software Internet Rep.2, 117–120 (2001). Article Google Scholar
Shi, L. et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol.28, 827–838 (2010). ArticleCASPubMed Google Scholar
Hoadley, K.A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell158, 929–944 (2014). ArticleCASPubMedPubMed Central Google Scholar
Iacobuzio-Donahue, C.A. et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J. Clin. Oncol.27, 1806–1813 (2009). ArticleCASPubMedPubMed Central Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA102, 15545–15550 (2005). CASPubMedPubMed Central Google Scholar
Neel, N.F. et al. Response to MLN8237 in pancreatic cancer is not dependent on RalA phosphorylation. Mol. Cancer Ther.13, 122–133 (2014). ArticleCASPubMed Google Scholar
Bachem, M.G. et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology128, 907–921 (2005). ArticleCASPubMed Google Scholar
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol.14, R36 (2013). ArticleCASPubMedPubMed Central Google Scholar
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc.7, 562–578 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature490, 61–70 (2012).