Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell97, 527–538 (1999). ArticleCASPubMed Google Scholar
Frank, K.M. et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell5, 993–1002 (2000). ArticleCASPubMed Google Scholar
Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature404, 897–900 (2000). ArticleCASPubMed Google Scholar
Hakem, R., de la Pompa, J.L., Elia, A., Potter, J. & Mak, T.W. Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nat. Genet.16, 298–302 (1997). ArticleCASPubMed Google Scholar
Lim, D.S. & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol.16, 7133–7143 (1996). ArticleCASPubMedPubMed Central Google Scholar
Xu, Y., Yang, E.M., Brugarolas, J., Jacks, T. & Baltimore, D. Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm−/− mice. Mol. Cell. Biol.18, 4385–4390 (1998). ArticleCASPubMedPubMed Central Google Scholar
Xu, X. et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet.28, 266–271 (2001). ArticleCASPubMed Google Scholar
Botchkarev, V.A. et al. p53 is essential for chemotherapy-induced hair loss. Cancer Res.60, 5002–5006 (2000). CASPubMed Google Scholar
Orii, K.E., Lee, Y., Kondo, N. & McKinnon, P.J. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc. Natl. Acad. Sci. USA103, 10017–10022 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tyner, S.D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature415, 45–53 (2002). ArticleCASPubMed Google Scholar
Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature448, 375–379 (2007). ArticleCASPubMed Google Scholar
Serrano, M. & Blasco, M.A. Cancer and ageing: convergent and divergent mechanisms. Nat. Rev. Mol. Cell Biol.8, 715–722 (2007). ArticleCASPubMed Google Scholar
García-Cao, I. et al. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep.7, 546–552 (2006). PubMedPubMed Central Google Scholar
Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev.14, 397–402 (2000). CASPubMedPubMed Central Google Scholar
Brown, E.J. & Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev.17, 615–628 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chanoux, R.A. et al. ATR and H2AX Cooperate in Maintaining Genome Stability under Replication Stress. J. Biol. Chem.284, 5994–6003 (2009). ArticleCASPubMedPubMed Central Google Scholar
Paulsen, R.D. & Cimprich, K.A. The ATR pathway: fine-tuning the fork. DNA Repair (Amst.)6, 953–966 (2007). ArticleCAS Google Scholar
Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell1, 113–126 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhou, B.B. & Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat. Rev. Cancer4, 216–225 (2004). ArticleCASPubMed Google Scholar
Nghiem, P., Park, P.K., Kim, Y., Vaziri, C. & Schreiber, S.L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. USA98, 9092–9097 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nghiem, P., Park, P.K., Kim Ys, Y.S., Desai, B.N. & Schreiber, S.L. ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J. Biol. Chem.277, 4428–4434 (2002). ArticleCASPubMed Google Scholar
Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol.22, 411–417 (2004). ArticleCASPubMed Google Scholar
Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCASPubMed Google Scholar
Coppé, J.P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol.6, 2853–2868 (2008). ArticlePubMed Google Scholar
Kuilman, T. & Peeper, D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer9, 81–94 (2009). ArticleCASPubMed Google Scholar
Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol11, 973–9 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cortez, D., Guntuku, S., Qin, J. & Elledge, S.J. ATR and ATRIP: partners in checkpoint signaling. Science294, 1713–1716 (2001). ArticleCASPubMed Google Scholar