Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses (original) (raw)

References

  1. Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247, 574–577 (1990).
    Article CAS Google Scholar
  2. Lindvall, O. et al Evidence for long-tern survival and function of dopaminergic grafts In progressive Parkinson's disease. Ann. Neurol. 35, 172–160 (1994).
    Article CAS Google Scholar
  3. Björklund, A. Better cells for brain repair. Nature 362, 414–415 (1993).
    Article Google Scholar
  4. Groves, A.K. et al. Repair of demyelinated lesions by transplantation of purified 0-2A progenitors. Nature 362, 453–455 (1993).
    Article CAS Google Scholar
  5. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).
    Article CAS Google Scholar
  6. Cattaneo, E. & McKay, R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347, 762–765 (1990).
    Article CAS Google Scholar
  7. Ray, J., Peterson, D.A., Schinstine, M. & Gage, F.H., Proliferation, differentiation, and long term culture of primary hippocampal neurons. Proc. natn. Acad. Sci. U.S.A. 90, 3602–3606 (1993).
    Article CAS Google Scholar
  8. Renfranz, P.J., Cunningham, M.G. & McKay, R.D.G. Region-specific differentiation of the hippocampal stem cell line HIB5 upon implantation into the developing mammalian brain. Cell 66, 713–729 (1991).
    Article CAS Google Scholar
  9. Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51 (1992).
    Article CAS Google Scholar
  10. Luskin, M.B., Pearlman, A.L. & Sanes, J.R. Cell lineage In the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647 (1988).
    Article CAS Google Scholar
  11. Horellou, P., Lundberg, C., Robert, J.-J., Björklund, A. & Mallet, J. Gene transfer in situ and in cells for intracerebral transplantation. Semin. Neurosci. 5, 453–459 (1993).
    Article Google Scholar
  12. Le Gal La Salle, G. et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259, 988–990 (1993).
    Article CAS Google Scholar
  13. Davidson, B.L., Allen, E.D., Kozarsky, K.F., Wilson, J.M. & Roessler, B.J. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Genet. 3, 219–223 (1993).
    Article CAS Google Scholar
  14. Akli, S. et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nature Genet. 3, 224–228 (1993).
    Article CAS Google Scholar
  15. Bajocchi, G., Feldman, S.H., Crystal, R.G. & Mastrangeli, A., in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nature Genet. 3, 229–234 (1993).
    CAS Google Scholar
  16. Frederiksen, K. & McKay, R. Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J. Neurosci. 8, 1144–1151 (1988).
    Article CAS Google Scholar
  17. Stagaard, M. & Mollgard, K. The developing neuroepithelium in human embryonic and fetal brain studied with nestin-immunocytochemistry. Anat. Embryol. 180, 17–28 (1989).
    Article CAS Google Scholar
  18. Buc-Caron, M.H. Neuroepithelial progenitor cells explanted from human fetal brain proliferate and differentiate in vitro. Neurobiol. Dis. (In the press).
  19. Stratford-Perricaudet, L.D., Levrero, M., Chase, J.F., Perricaudet, M. & Briand, P. Widespread long-term gene transfer to mouse skeletal muscle and heart. J. clin. Invest. 90, 626–630 (1992).
    Article CAS Google Scholar
  20. C. et al. Adenoviral vector as a gene delivery system into cultured rat neuronal and glial cells. Eur. J. Neurosci. 5, 1287–1291 (1993).
  21. Lal, B., Cahan, M.A., Couraud, P.-O., Goldstein, G.W. & Laterra, J. Development of endogenous β-galactosidase and auto fluorescence in rat brain microvessels: implications for cell tracking and gene transfer studies. J. Histochem. Cytochem. 42, 953–956 (1994).
    Article CAS Google Scholar
  22. Shimohama, S. et al. Grafting genetically modified cells Into the rat brain: Characteristics of E. coli β-galactosidase as a reporter gene. Molec. Brain Res. 5, 271–278 (1989).
    Article CAS Google Scholar
  23. Kato, K., Suzuki, F., Watanabe, T., Semba, R. & Keino, H. Developmental profile of three enolase Isoenzymes in rat brain determination from one-cell embryo to adult brain. Neurochem. Int. 6, 51–54 (1984).
    Article Google Scholar
  24. Denoulet, P., Edde, B. & Gros, F. Differential expression of several neurospecific b-tubuiin mRNAs in the mouse brain during development. Gene 50, 289–297 (1986).
    Article CAS Google Scholar
  25. Tucker, R.P. The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res. Rev. 15, 101–120 (1990).
    Article CAS Google Scholar
  26. Tohyama, T., Lee, V.M.-Y., Rorke, L.B. & Trojanowski, J.Q. Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. J. comp. Neurol. 310, 285–299 (1991).
    Article CAS Google Scholar
  27. Raff, M.C. Glial cell diversification in the rat optic nerve. Science 243, 1450–1454 (1989).
    Article CAS Google Scholar
  28. Brundin, P. et al. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behavior, and dopamine release. Exp. Brain Res. 70, 192–208 (1988).
    CAS PubMed Google Scholar
  29. Kaplitt, M.G. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genet 8, 148–153 (1994).
    Article CAS Google Scholar
  30. During, M.J., Naegele, J.R., O'Malley, K.L. & Geller, A.I. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266, 1399–1403 (1994).
    Article CAS Google Scholar
  31. Horellou, P. et al. Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson's disease. Neuro Report 6, 49–63 (1994).
    CAS Google Scholar
  32. Fisher, L.J., Jinnah, H.A., Kale, L.C., Higgins, G.A. & Gage, F.H. Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 6, 371–380 (1991).
    Article CAS Google Scholar
  33. Jiao, S., Guevich, V. & Wolff, J.A. Long-term correction of rat model of Parkinson's disease by gene therapy. Nature 362, 450–453 (1993).
    Article CAS Google Scholar
  34. Horellou, P., Brundin, P., Kalén, P., Mallet, J. & Björklund, A. In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum, Neuron 5, 393–402 (1990).
    Article CAS Google Scholar
  35. Levallois, C., Privat, A. & Mallet, J. Adenovirus insertion encoding the Lac Z gene in human nervous cells in primary dissociated cultures. C. r. Acad. Sci. Paris, Life Sci. 317, 495–498 (1994).
    CAS Google Scholar
  36. Ridoux, V. et al. The use of adenovirus vectors for intracerebral grafting of transfected nervous cells. Neuro Report 5, 801–804 (1994).
    CAS Google Scholar
  37. Yang, Y. et al. Inactivation of E2A in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genet. 7, 362–369 (1994).
    Article CAS Google Scholar
  38. Brundin, P., issection, preparation, and implantation of human embryonic tissue, in Neural Transplantation, A Practical Approach, (eds Dunnnett, S. & Björklund, A.) 8, 139–160 (I RL Press, Oxford 1992).
    Google Scholar
  39. Bottenstein, J.E. & Sato, G.H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. natn. Acad. Sci. U.S.A. 76, 514–517 (1979).
    Article CAS Google Scholar
  40. Abercrombie, M. Estimation of nuclear population from microtome sections. Anat Rec. 94, 239–247 (1946).
    Article CAS Google Scholar
  41. Tucker, G.C., Aoyama, H., Lipinski, M., Tursz, T. & Thiery, J.P. Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leucocytes. Cell Diff. 14, 223–230 (1984).
    CAS Google Scholar

Download references