p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis (original) (raw)

References

  1. UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation. (United Nations, New York, 1988).
  2. Breimer, L.H. Ionizing radiation-induced mutagenesis. Brit. J. Cancer 57, 6–18 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  3. Keurbitz, S.J., Plunkett, B.S., Walsh, W.V. & Kastan, M.B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. natn. Acad. Sci. U.S.A. 89, 7491–7495 (1992).
    Article Google Scholar
  4. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).
    Article CAS PubMed Google Scholar
  5. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).
    Article CAS PubMed Google Scholar
  6. Merritt, A.J. et al. The role of spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53 deficient mice. Cancer Res. 54, 614–617 (1994).
    CAS PubMed Google Scholar
  7. Lotem, J. & Sachs, L. Hematopoeitic cells from mice deficient in wild type p53 are more resistant to induction of apoptosis by some agents. Blood 82, 1092–1096 (1993).
    CAS PubMed Google Scholar
  8. Lane, D.P. p53, guardian of the genome. Nature 358, 15–16 (1992).
    Article CAS PubMed Google Scholar
  9. Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2457–2467 (1993).
    CAS PubMed Google Scholar
  10. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).
    Article CAS PubMed Google Scholar
  11. Lee, J.M. & Bernstein, A. p53 mutations increase resistance to ionizing radiation. Proc. natn. Acad. Sci. U.S.A. 90, 5742–5746 (1993).
    Article CAS Google Scholar
  12. Slichenmyer, W.J., Nelson, W.G., Slebos, R.J. & Kastan, M.B. Loss of p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res. 53, 4164–4168 (1993).
    CAS PubMed Google Scholar
  13. Kemp, C.J., Donehower, L.A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).
    Article CAS PubMed Google Scholar
  14. Nelson, W.G. & Kastan, M.B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Molec. cell. Biol. 14, 1815–1823 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  15. Harvey, M., McArthur, M.J., Montgomery, C.A. Jr., Butel, J.S., Bradley, A. & Donehower, L.A. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).
    Article CAS PubMed Google Scholar
  16. Purdie, C.A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene. 9, 603–609 (1994).
    CAS PubMed Google Scholar
  17. Jacks, T. et al. Tumour spectrum analysis in p53-mutant mice. Current Biol. 4, 1–7 (1994).
    Article CAS Google Scholar
  18. Searle, A.G. The biological basis of risk assesment 123–137 (Taylor and Francis, New York, 1989).
    Google Scholar
  19. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).
    Article CAS PubMed Google Scholar
  20. Kennedy, A.R., Fox, M., Murphy, G. & Little, J.B. Relationship between x-ray exposure and malignant transformation of C3H 10 T1/2 cells. Proc. natn. Acad. Sci. U.S.A. 77, 7262–7266 (1980).
    Article CAS Google Scholar
  21. Yi, C.H., Yandell, D.W. & Little, J.B. Evidence for coincident mutations in human lymphoblast clones selected for functional loss of a thymidine kinase gene. Molec. Carcinog. 5, 270–277 (1992).
    Article Google Scholar
  22. Kadhim, M.A. et al. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355, 738–740 (1992).
    Article CAS PubMed Google Scholar
  23. Marder, B.A. & Morgan, W.F. Delayed chromosomal instability induced by DNA damage. Molec. cell. Biol. 13, 6667–6677 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  24. Kemp, C.J., Fee, F. & Balmain, A. Allelotype analysis of mouse skin tumours using polymorphic microsatellites: sequencial genetic alterations on chromosomes 6, 7 and 11. Cancer Res. 53, 6022–6027 (1993).
    CAS PubMed Google Scholar
  25. Wiseman, R.W., Cochran, C., Dietrich, W., Lander, E.S. & Soderkvist, P. Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heteroygosity in regions homologous to human tumor-suppressor genes. Proc. natn. Acad. Sci. U.S.A. 91, 3759–3763 (1994).
    Article CAS Google Scholar
  26. Srivastava, S., Zou, Z.Q., Pirolla, K., Blattner, W. & Chang, E.H. Germ line transmission of a mutated p53 gene in a family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).
    Article CAS PubMed Google Scholar
  27. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250, 1233–1238 (1990).
    Article CAS PubMed Google Scholar
  28. Li, F.P. et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 48, 5358–5362 (1988).
    CAS PubMed Google Scholar

Download references