The use of a genetic map of biallelic markers in linkage studies (original) (raw)

References

  1. Botstein, D., White, D.L., Skolnick, M. & Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).
    CAS PubMed PubMed Central Google Scholar
  2. Wyman, A.R. & White, R.W. A highly polymorphic locus in human DNA. Proc. Natl. Acad. Sci. USA 77, 6754–6758 (1980).
    Article CAS PubMed PubMed Central Google Scholar
  3. Gusella, J.F. et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306, 234–238 (1983).
    Article CAS PubMed Google Scholar
  4. Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 51, 319–337 (1987).
    Article CAS PubMed Google Scholar
  5. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).
    CAS PubMed PubMed Central Google Scholar
  6. Cooperative Human Linkage Center. A comprehensive human linkage map with centimorgan density. Science 265, 2049–2054 (1994).
    Article CAS PubMed Google Scholar
  7. Dib, C. et al. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature 380, 152–154 (1996).
    Article CAS PubMed Google Scholar
  8. Hofker, M.H. et al. The X chromosome shows less genetic variation at restriction sites than the autosomes. Am. J. Hum. Genet. 39, 438–451 (1986).
    CAS PubMed PubMed Central Google Scholar
  9. Cooper, D.N., Smith, B.A., Cooke, H.J., Niemann, S. & Schmidtke, J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum. Genet. 69, 201–205 (1985).
    Article CAS PubMed Google Scholar
  10. Nickerson, D.A. et al. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl. Acad. Sci. USA 87, 8923–8927 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  11. Livak, K.J., Marmaro, J. & Todd, J.A. Towards fully automated genome-wide polymorphism screening. Nature Genet. 9, 341–342 (1995).
    Article CAS PubMed Google Scholar
  12. Saiki, R.K., Walsh, P.S., Levenson, C.H. & Erlich, H.A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86, 6230–6234 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  13. Syyanen, A.-C., Aalto-Setala, K., Harju, L., Kontula, K. & Soderlund, H. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8, 684–692 (1990).
    Article Google Scholar
  14. Wu, D.Y., Ugozzoli, L., Pal, B.K. & Wallace, R.B. Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl. Acad. Sci. USA 86, 2757–2760 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  15. Wang, D. et al. Toward a third generation genetic map of the human genome based on biallelic polymorphisms. Am. J. Hum. Genet. 59, A3 (1996).
    Google Scholar
  16. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).
    Article CAS PubMed Google Scholar
  17. Kruglyak, L. & Lander, E.S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57, 439–454 (1995).
    CAS PubMed PubMed Central Google Scholar
  18. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).
    CAS PubMed PubMed Central Google Scholar
  19. Reed, P.W. et al. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet. 7, 390–395 (1994).
    Article CAS PubMed Google Scholar
  20. Dubovsky, J., Sheffield, V.C., Duyk, G.M. & Weber, J.L. Sets of short tandem repeat polymorphisms for efficient linkage screening of the human genome. Hum. Mol. Genet. 4, 449–452 (1995).
    Article CAS PubMed Google Scholar
  21. Elston, R.C. Designs for the global search of the human genome by linkage analysis. in Proceedings of the 16th International Biometrics Conference 39–51 (Hamilton, New Zealand, 1992).
    Google Scholar
  22. Brown, D.L., Gorin, M.B. & Weeks, D.E. Efficient strategies for genomic searching using the affected-pedigree-member method of linkage analysis. Am. J. Hum. Genet. 54, 544–552 (1994).
    CAS PubMed PubMed Central Google Scholar
  23. Terwilliger, J.D., Ding, Y. & Ott, J. On the relative importance of marker heterozygosity and intermarker distance in gene mapping. Genomics 13, 951–956 (1992).
    Article CAS PubMed Google Scholar
  24. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).
    Article CAS PubMed Google Scholar
  25. O'Connell, J.R. & Weeks, D.E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nature Genet. 11, 402–408 (1995).
    Article CAS PubMed Google Scholar
  26. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).
    Article CAS PubMed Google Scholar
  27. Lander, E.S. The new genomics: global views of biology. Science 274, 536–539 (1996).
    Article CAS PubMed Google Scholar
  28. Collins, F.S. Positional cloning moves from perditional to traditional. Nature Genet. 9, 347–350 (1995).
    Article CAS PubMed Google Scholar

Download references