Acetylation inactivates the transcriptional repressor BCL6 (original) (raw)
References
Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science262, 747–750 (1993). ArticleCAS Google Scholar
Ye, B.H. et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B-cell lymphoma. EMBO J.14, 6209–6217 (1995). ArticleCAS Google Scholar
Baron, B.W. et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl Acad. Sci. USA90, 5262–5266 (1993). ArticleCAS Google Scholar
Kerckaert, J.P. et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nature Genet.5, 66–70 (1993). ArticleCAS Google Scholar
Zollman, S., Godt, D., Prive, G.G., Couderc, J.L. & Laski, F.A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl Acad. Sci. USA91, 10717–10721 (1994). ArticleCAS Google Scholar
Chang, C.C., Ye, B.H., Chaganti, R.S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl Acad. Sci. USA93, 6947–6952 (1996). ArticleCAS Google Scholar
Seyfert, V.L., Allman, D., He, Y. & Staudt, L.M. Transcriptional repression by the proto-oncogene BCL-6. Oncogene12, 2331–2342 (1996). CAS Google Scholar
Dhordain, P. et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res.26, 4645–4651 (1998). ArticleCAS Google Scholar
Dhordain, P. et al. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc. Natl Acad. Sci. USA94, 10762–10767 (1997). ArticleCAS Google Scholar
Wong, C.W. & Privalsky, M.L. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARα, and BCL-6. J. Biol. Chem.273, 27695–27702 (1998). ArticleCAS Google Scholar
Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood86, 45–53 (1995). CAS Google Scholar
Onizuka, T. et al. BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal-center B cells and their neoplastic counterparts. Blood86, 28–37 (1995). CAS Google Scholar
Rajewsky, K. Clonal selection and learning in the antibody system. Nature381, 751–758 (1996). ArticleCAS Google Scholar
Ye, B.H. et al. The BCL-6 proto-oncogene controls germinal-center formation and Th2-type inflammation. Nature Genet.16, 161–170 (1997). ArticleCAS Google Scholar
Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal-center formation by BCL-6. Science276, 589–592 (1997). ArticleCAS Google Scholar
Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell-cycle control. Immunity13, 199–212 (2000). ArticleCAS Google Scholar
Reljic, R., Wagner, S.D., Peakman, L.J. & Fearon, D.T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med.192, 1841–1848 (2000). ArticleCAS Google Scholar
Harris, M.B. et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol. Cell. Biol.19, 7264–7275 (1999). ArticleCAS Google Scholar
Niu, H., Ye, B.H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev.12, 1953–1961 (1998). ArticleCAS Google Scholar
Allman, D. et al. BCL-6 expression during B-cell activation. Blood87, 5257–5268 (1996). CAS Google Scholar
Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science280, 1750–1752 (1998). ArticleCAS Google Scholar
Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA92, 12520–12524 (1995). ArticleCAS Google Scholar
Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA95, 11816–11821 (1998). CASPubMed Central Google Scholar
Artiga, M.J. et al. A short mutational hot spot in the first intron of BCL-6 is associated with increased BCL-6 expression and with longer overall survival in large B-cell lymphomas. Am. J. Pathol.160, 1371–1380 (2002). ArticleCAS Google Scholar
Sterner, D.E. & Berger, S.L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev.64, 435–459 (2000). ArticleCAS Google Scholar
Barlev, N.A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell8, 1243–1254 (2001). ArticleCAS Google Scholar
Gu, W. & Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell90, 595–606 (1997). ArticleCAS Google Scholar
Chan, H.M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N.B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol.3, 667–674 (2001). ArticleCAS Google Scholar
Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. EMBO J.19, 662–671 (2000). ArticleCAS Google Scholar
Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell87, 953–959 (1996). ArticleCAS Google Scholar
Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature396, 594–598 (1998). ArticleCAS Google Scholar
Chan, H.M. & La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci.114, 2363–2373 (2001). CAS Google Scholar
Zhang, W., Bone, J.R., Edmondson, D.G., Turner, B.M. & Roth, S.Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J.17, 3155–3167 (1998). ArticleCAS Google Scholar
Ng, H.H. & Bird, A. Histone deacetylases: silencers for hire. Trends Biochem. Sci.25, 121–126 (2000). ArticleCAS Google Scholar
Albagli, O. et al. Multiple domains participate in distance-independent LAZ3/BCL6-mediated transcriptional repression. Biochem. Biophys. Res. Commun.220, 911–915 (1996). ArticleCAS Google Scholar
Huynh, K.D. & Bardwell, V.J. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene17, 2473–2484 (1998). ArticleCAS Google Scholar
Marks, P.A., Richon, V.M. & Rifkind, R.A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl Cancer Inst.92, 1210–1216 (2000). ArticleCAS Google Scholar
Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell107, 149–159 (2001). ArticleCAS Google Scholar
Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell107, 137–148 (2001). ArticleCAS Google Scholar
Iida, S. et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nature Genet.17, 226–230 (1997). ArticleCAS Google Scholar
Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev.12, 2831–2841 (1998). ArticleCAS Google Scholar
Zhang, H., Okada, S., Hatano, M., Okabe, S. & Tokuhisa, T. A new functional domain of Bcl6 family that recruits histone deacetylases. Biochim. Biophys. Acta1540, 188–200 (2001). ArticleCAS Google Scholar
Cress, W.D. & Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell Physiol.184, 1–16 (2000). ArticleCAS Google Scholar
Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature403, 795–800 (2000). ArticleCAS Google Scholar
Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev.14, 1021–1026 (2000). CAS Google Scholar
Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature408, 377–381 (2000). ArticleCAS Google Scholar
Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W. & Vogelstein, B. A model for p53-induced apoptosis. Nature389, 300–305 (1997). ArticleCAS Google Scholar
Gaidano, G. et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA88, 5413–5417 (1991). ArticleCAS Google Scholar
Moller, M.B., Gerdes, A.M., Skjodt, K., Mortensen, L.S. & Pedersen, N.T. Disrupted p53 function as predictor of treatment failure and poor prognosis in B- and T-cell non-Hodgkin's lymphoma. Clin. Cancer Res.5, 1085–1091 (1999). CAS Google Scholar