Acetylation inactivates the transcriptional repressor BCL6 (original) (raw)

References

  1. Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).
    Article CAS Google Scholar
  2. Ye, B.H. et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B-cell lymphoma. EMBO J. 14, 6209–6217 (1995).
    Article CAS Google Scholar
  3. Baron, B.W. et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl Acad. Sci. USA 90, 5262–5266 (1993).
    Article CAS Google Scholar
  4. Kerckaert, J.P. et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nature Genet. 5, 66–70 (1993).
    Article CAS Google Scholar
  5. Zollman, S., Godt, D., Prive, G.G., Couderc, J.L. & Laski, F.A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl Acad. Sci. USA 91, 10717–10721 (1994).
    Article CAS Google Scholar
  6. Chang, C.C., Ye, B.H., Chaganti, R.S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl Acad. Sci. USA 93, 6947–6952 (1996).
    Article CAS Google Scholar
  7. Seyfert, V.L., Allman, D., He, Y. & Staudt, L.M. Transcriptional repression by the proto-oncogene BCL-6. Oncogene 12, 2331–2342 (1996).
    CAS Google Scholar
  8. Dhordain, P. et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 26, 4645–4651 (1998).
    Article CAS Google Scholar
  9. Dhordain, P. et al. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc. Natl Acad. Sci. USA 94, 10762–10767 (1997).
    Article CAS Google Scholar
  10. Wong, C.W. & Privalsky, M.L. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARα, and BCL-6. J. Biol. Chem. 273, 27695–27702 (1998).
    Article CAS Google Scholar
  11. Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45–53 (1995).
    CAS Google Scholar
  12. Onizuka, T. et al. BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal-center B cells and their neoplastic counterparts. Blood 86, 28–37 (1995).
    CAS Google Scholar
  13. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).
    Article CAS Google Scholar
  14. Ye, B.H. et al. The BCL-6 proto-oncogene controls germinal-center formation and Th2-type inflammation. Nature Genet. 16, 161–170 (1997).
    Article CAS Google Scholar
  15. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal-center formation by BCL-6. Science 276, 589–592 (1997).
    Article CAS Google Scholar
  16. Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell-cycle control. Immunity 13, 199–212 (2000).
    Article CAS Google Scholar
  17. Reljic, R., Wagner, S.D., Peakman, L.J. & Fearon, D.T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med. 192, 1841–1848 (2000).
    Article CAS Google Scholar
  18. Harris, M.B. et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol. Cell. Biol. 19, 7264–7275 (1999).
    Article CAS Google Scholar
  19. Niu, H., Ye, B.H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).
    Article CAS Google Scholar
  20. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).
    CAS Google Scholar
  21. Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).
    Article CAS Google Scholar
  22. Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA 92, 12520–12524 (1995).
    Article CAS Google Scholar
  23. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).
    CAS PubMed Central Google Scholar
  24. Artiga, M.J. et al. A short mutational hot spot in the first intron of BCL-6 is associated with increased BCL-6 expression and with longer overall survival in large B-cell lymphomas. Am. J. Pathol. 160, 1371–1380 (2002).
    Article CAS Google Scholar
  25. Sterner, D.E. & Berger, S.L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435–459 (2000).
    Article CAS Google Scholar
  26. Barlev, N.A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).
    Article CAS Google Scholar
  27. Gu, W. & Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).
    Article CAS Google Scholar
  28. Roth, S.Y., Denu, J.M. & Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).
    Article CAS Google Scholar
  29. Chan, H.M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N.B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001).
    Article CAS Google Scholar
  30. Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671 (2000).
    Article CAS Google Scholar
  31. Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).
    Article CAS Google Scholar
  32. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594–598 (1998).
    Article CAS Google Scholar
  33. Chan, H.M. & La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373 (2001).
    CAS Google Scholar
  34. Zhang, W., Bone, J.R., Edmondson, D.G., Turner, B.M. & Roth, S.Y. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 17, 3155–3167 (1998).
    Article CAS Google Scholar
  35. Ng, H.H. & Bird, A. Histone deacetylases: silencers for hire. Trends Biochem. Sci. 25, 121–126 (2000).
    Article CAS Google Scholar
  36. Albagli, O. et al. Multiple domains participate in distance-independent LAZ3/BCL6-mediated transcriptional repression. Biochem. Biophys. Res. Commun. 220, 911–915 (1996).
    Article CAS Google Scholar
  37. Huynh, K.D. & Bardwell, V.J. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17, 2473–2484 (1998).
    Article CAS Google Scholar
  38. Marks, P.A., Richon, V.M. & Rifkind, R.A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl Cancer Inst. 92, 1210–1216 (2000).
    Article CAS Google Scholar
  39. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).
    Article CAS Google Scholar
  40. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).
    Article CAS Google Scholar
  41. Iida, S. et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nature Genet. 17, 226–230 (1997).
    Article CAS Google Scholar
  42. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841 (1998).
    Article CAS Google Scholar
  43. Zhang, H., Okada, S., Hatano, M., Okabe, S. & Tokuhisa, T. A new functional domain of Bcl6 family that recruits histone deacetylases. Biochim. Biophys. Acta 1540, 188–200 (2001).
    Article CAS Google Scholar
  44. Cress, W.D. & Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell Physiol. 184, 1–16 (2000).
    Article CAS Google Scholar
  45. Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).
    Article CAS Google Scholar
  46. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 (2000).
    CAS Google Scholar
  47. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).
    Article CAS Google Scholar
  48. Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).
    Article CAS Google Scholar
  49. Gaidano, G. et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 88, 5413–5417 (1991).
    Article CAS Google Scholar
  50. Moller, M.B., Gerdes, A.M., Skjodt, K., Mortensen, L.S. & Pedersen, N.T. Disrupted p53 function as predictor of treatment failure and poor prognosis in B- and T-cell non-Hodgkin's lymphoma. Clin. Cancer Res. 5, 1085–1091 (1999).
    CAS Google Scholar

Download references