Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism (original) (raw)

References

  1. Jeffreys, A.J. & Pena, S.D.J. Brief introduction to human DNA fingerprinting. in DNA fingerprinting: state of the science (etePena, S.D.J., Chakraborty, R., Epplen, J.T. & Jeffreys, A.J.) 1–20 (Blrkhauser Verlag, Basel, 1993).
    Google Scholar
  2. Jeffreys, A.J., Neumann, R. & Wilson, V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60, 473–485 (1990).
    Article CAS Google Scholar
  3. Jeffreys, A.J. et al. Minisatellite repeat coding as a digital approach to DNA typing. Nature 354, 204–209 (1991).
    Article CAS Google Scholar
  4. Armour, J.A.L., Harris, P.C. & Jeffreys, A.J. Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability. Hum. molec. Genet. 2, 1137–1145 (1993).
    Article CAS Google Scholar
  5. Neil, D.L. & Jeffreys, A.J. Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping. Hum. molec. Genet. 2, 1129–1135 (1993).
    Article CAS Google Scholar
  6. Buard, J. & Vergnaud, G. Complex recombination events at the hyper mutable minisatellite CEB1 (D2S90). EMBO J. (On the press).
  7. Jeffreys, A.J., Royle, N.J., Wilson, V. & Wong, Z. Spontaneous mutation rates to new length alleles at tandem repetitive hypervariable loci in human DNA. Nature 332, 278–281 (1988).
    Article CAS Google Scholar
  8. Vergnaud, G. et al. The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11, 135–144 (1991).
    Article CAS Google Scholar
  9. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).
    Article CAS Google Scholar
  10. Allen, M.J. et al. Tandemly repeated transgenes of the human minisatellite MS32 (D1S8), with novel mouse gamma satellite integration. Nucl. Acids Res. 22, 2976–2981 (1994).
    Article CAS Google Scholar
  11. Monckton, D.G., Tamaki, K., MacLeod, A., Neil, D.L. & Jeffreys, A.J. Allele-specific MVR-PCR analysis at minisatellite D1S8. Hum. molec. Genet. 2, 513–519 (1993).
    Article CAS Google Scholar
  12. Tamaki, K., Monckton, D.G., MacLeod, A., Allen, M. & Jeffreys, A.J. Four-state MVR-PCR: increased discrimination of digital DNA typing by simultaneous analysis of two polymorphic sites within minisatellite variant repeats at D1S8. Hum. molec. Genet. 2, 1629–1632 (1993).
    Article CAS Google Scholar
  13. Sun, H., Treco, D. & Szostak, J.W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161 (1991).
    Article CAS Google Scholar
  14. Schultes, N.P. & Szostak, J.W. A poly(dA.dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae . Molec. cell. Biol. 11, 322–328 (1991).
    Article CAS Google Scholar
  15. Massey, B. & Nicholas, A. The control in cis of the position and the amount of the ARG4 meiotic double-strand break of Saccharomyces cerevisiae . EMBOJ. 12, 1459–1466 (1993).
    Article Google Scholar
  16. Maeda, N. Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair. J. biol. Chem. 260, 6690–6709 (1985).
    Google Scholar
  17. Armour, J.A.L., Wong, Z., Wilson, V., Royle, N.J. & Jeffreys, A.J. Sequences flanking the repeat arrays of human minisatellites: association with tandem and dispersed repeat elements. Nucl. Acids Res. 17, 4925–4935 (1989).
    Article CAS Google Scholar
  18. Kelly, R., Gibbs, M., Collick, A. & Jeffreys, A.J. Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic mutation events. Proc. R. Soc. Lond. B 245, 235–245 (1991).
    Google Scholar
  19. Mermer, B., Colb, M. & Krontiris, T.G. A family of short, interspersed repeats is associated with tandemly repetitive DNA in the human genome. Proc. natn. Acad. Sci. U.S.A. 84, 3320–3324 (1987).
    Article CAS Google Scholar
  20. Smit, A. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucl. Acids Res. 21, 1863–1872 (1993).
    Article CAS Google Scholar
  21. Sylla, B.S., Allard, D., Roy, G., Bourgaux-Ramoisy, D. & Bourgaux, P. A mouse DNA sequence that mediates integration and excision of polyoma virus DNA. Gene 29, 343–350 (1984).
    Article CAS Google Scholar
  22. Misra, R., Shih, A., Rush, M., Wong, E. & Schmid, C.W. Cloned extrachromosomal circular DNA copies of the human transposable element THE-1 are related predominantly to a single type of family member. J. molec. Biol. 196, 233–243 (1987).
    Article CAS Google Scholar
  23. Edelman, W., Kroger, B., Goller, M. & Horak, I. A recombinational hotspot identified in an in vitro system. Cell 57, 937–946 (1989).
    Article Google Scholar
  24. Keshet, E., Schiff, R. & Ahuva, I. Mouse retrotransposons: a cellular reservoir of long terminal repeats (LTR) elements with diverse transcriptional specificities. Adv. cancer Res. 56, 215–251 (1991).
    Article CAS Google Scholar
  25. Fields, C.A., Grady, D.L. & Moyzis, R.K. The human THE-LTR(O) and MstII interspersed repeats are subfamilies of a single widely distributed highly variable repeat family. Genomics 13, 431–436 (1992).
    Article CAS Google Scholar
  26. Pizutti, A., Pieretti, M., Fenwick, R.G., Gibbs, R.A. & Caskey, C.T. Atransposon-like element in the deletion-prone region of the dystrophin gene. Genomics 13, 594–600 (1992).
    Article Google Scholar
  27. Sanha, B.K. Recruitment of multiple alleles within the Eb recombinational hotspot in murine MHC. Mamm. Genome. 4, 565–570 (1993).
    Article Google Scholar
  28. Richards, R.I. et al. Evidence of founder chromosomes in fragileX syndrome. Nature Genet. 1, 257–260 (1992).
    Article CAS Google Scholar
  29. Richards, R.I. & Sutherland, G.R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712 (1992).
    Article CAS Google Scholar
  30. Oudet, C., von Koskull, H., Nordström, A.M., Peippo, M. & Mandel, J.-L. Striking founder effect for the Fragile X syndrome in Finland. Eur. J. hum. Genet. 1, 181–189 (1993).
    Article CAS Google Scholar
  31. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucteotide repeat that is expanded and unstable on Huntington's Disease chromosomes. Cell 72, 971–983 (1993).
    Article Google Scholar
  32. Harley, H.G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).
    Article CAS Google Scholar
  33. Imbert, G., Kretz, C., Johnson, K. & Mandel, J.-L. Origin of the expansion mutation in myotonic dystrophy. Nature Genet. 4, 72–76 (1993).
    Article CAS Google Scholar
  34. Chung, M. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genet. 5, 254–258 (1993).
    Article CAS Google Scholar
  35. Kunst, C.B. & Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–661 (1994).
    Article CAS Google Scholar
  36. Zhong, N., Dobkin, C. & Brown, W.T. A complex mutable polymorphism located within the fragile X gene. Nature Genet. 5, 248–253 (1993).
    Article CAS Google Scholar
  37. Macpherson, J.N., Bullman, H., Youings, S.A. & Jacobs, P.A. Insert size and flanking haplotype in fragile X and normal populations: possible multiple origins for the fragile X mutation. Hum. molec. Genet. 3, 399–405 (1994).
    Article CAS Google Scholar
  38. Ewens, W.J. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).
    Article CAS Google Scholar
  39. Tamaki, K. et al. Minisatellite variant repeat (MVR) mapping: analysis of ‘null’ repeat units at D1S8. Hum. molec. Genet. 1, 401–406 (1992).
    Article CAS Google Scholar

Download references