X-linked situs abnormalities result from mutations in ZIC3 (original) (raw)

References

  1. Kosaki, K. & Casey, B. Genetics of human left-right axis malformations. Semin. Cell Dev. Biol. (in the press).
  2. Casey, B., Devoto, M., Jones, K.L. & Ballabio, A. Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27. 1.. Nature Genet. 5, 403–407 (1993).
    Article CAS PubMed Google Scholar
  3. Ferrero, G.B. et al. A submicroscopic deletion in Xq26 associated with familial _situs ambiguus_situs ambiguus. Am. J. Hum. Genet. 61, 395–401 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  4. Larsen, W.J., Human Embryology (Churchill-Livingstone, New York, 1993).
    Google Scholar
  5. Britz-Cunningham, S.H., Shah, M.M., Zuppan, C.W. & Fletcher, W.H. Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N. Engl. J. Med. 332, 1323–1329 (1995).
    Article CAS PubMed Google Scholar
  6. Gebbia, M., Towbin, J.A. & Casey, B. Failure to detect connexin43 mutations in 38 cases of sporadic and familial heterotaxy. Circulation 94, 1909–1912 (1996).
    Article CAS PubMed Google Scholar
  7. Penman-Splitt, M., Tsai, M.Y., Burn, J. & Goodship, J.A. Absence of mutations in the regulatory domain of the gap junction protein connexin 43 in patients with visceroatrial heterotaxy. Heart 77, 369–370 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  8. Pilia, G. et al. YAC/STS map of 9 Mb of Xq26 at 100-kb resolution, localizing 6 ESTs, 6 genes, and 32 genetic markers. Genomics 34, 55–62 (1996).
    Article CAS PubMed Google Scholar
  9. Aruga, J. et al. The mouse Zic gene family. J. Biol. Chem. 271, 1043–1047 (1996).
    Article CAS PubMed Google Scholar
  10. Aruga, J. et al. Identification and characterization of Zic4, a new member ofthe mouse Zic gene family. Gene 172, 291–294 (1996).
    Article CAS PubMed Google Scholar
  11. Nagai, T. et al. The expression of the mouse Zic7, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev.Biol. 182, 299–313 (1997).
    Article CAS PubMed Google Scholar
  12. Benedyk, M.J., Mullen, J.R. & DiNardo, S. odd-paired: a zinc finger pair-rule protein required for the tirnely activation of engrailed and wingless in Drosophila embryos. Genes Dev. 8, 105–117 (1994).
    Article CAS PubMed Google Scholar
  13. Cimbora, D.M. & Sakonju, S. Drosophila midgut morphogenesis requires the function of the segmentation gene odd-paired. Dev. Biol. 169, 580–595 (1995).
    Article CAS PubMed Google Scholar
  14. Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M. & Tabin, C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).
    Article CAS PubMed Google Scholar
  15. Levin, M. Left-right asymmetry in vertebrate embryogenesis. Bioessays 19, 287–296 (1997).
    Article CAS PubMed Google Scholar
  16. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. j Biol. Chem. 266, 196–197 (1991).
    Google Scholar
  17. Casey, B. et al. Autosomal dominant transmission of familial laterality defects. Am. J. Med. Genet. 61, 325–328 (1996).
    Article CAS PubMed Google Scholar
  18. Lowe, L.A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).
    Article CAS PubMed Google Scholar
  19. Collignon, J., Varlet, I. & Robertson, E.J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).
    Article CAS PubMed Google Scholar
  20. Meno, C. et al. Left-right asymmetric expression of the TGFβ-family member lefty in mouse embryos. Nature 381, 151–155 (1996).
    Article CAS PubMed Google Scholar
  21. Isaac, A., Sargent, M.G. & Cooke, J. Control of vertebrate left-right asymmetry by a _snail_-related zinc finger gene. Science 275, 1301–1304 (1997).
    Article CAS PubMed Google Scholar
  22. Danos, M.C. & Yost, H.J. Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development 121, 1467–1474 (1995).
    CAS PubMed Google Scholar
  23. Danos, M.C. & Yost, H.J. Role of notochord in specification ofthe cardiac left-right axis in zebrafish and Xenopus. Dev. Biol. 177, 96–103 (1996).
    Article CAS PubMed Google Scholar
  24. Lohr, J.L., Danos, M.C. & Yost, H.J. Left-right asymmetry of a noda/-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development, 124, 1465–1472 (1997).
    CAS Google Scholar
  25. Hyatt, B.A., Lohr, J.L. & Yost, H.J. Initiation of vertebrate left-right axis formation by maternal Vg1. Nature 384, 62–65 (1996).
    Article CAS PubMed Google Scholar
  26. Burke, D., Carle, G. & Olson, M. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812 (1987).
    Article CAS PubMed Google Scholar
  27. Wapenaar, M.C. et al. A YAC-based binning strategy for facilitating the rapid assembly of cosmid contigs: 1.6 Mb of overlapping cosmids in Xp22. Hum. Mol. Genet. 3, 1155–1161 (1994).
    Article CAS PubMed Google Scholar
  28. Orita, M., Suzuki, Y., Sekiya, T. & Haayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).
    Article CAS PubMed Google Scholar

Download references