RPA regulates telomerase action by providing Est1p access to chromosome ends (original) (raw)

References

  1. Longhese, M.P., Plevani, P. & Lucchini, G. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol. 14, 7884–7890 (1994).
    Article CAS Google Scholar
  2. Wold, M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).
    Article CAS Google Scholar
  3. Smith, J., Zou, H. & Rothstein, R. Characterization of genetic interactions with RFA1: the role of RPA in DNA replication and telomere maintenance. Biochimie 82, 71–78 (2000).
    Article CAS Google Scholar
  4. Brill, S.J. & Stillman, B. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev. 5, 1589–1600 (1991).
    Article CAS Google Scholar
  5. Brush, G.S., Morrow, D.M., Hieter, P. & Kelly, T.J. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl. Acad. Sci. USA 93, 15075–15080 (1996).
    Article CAS Google Scholar
  6. Brush, G.S. & Kelly, T.J. Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response. Nucleic Acids Res. 19, 3725–3732 (2000).
    Article Google Scholar
  7. Brush, G.S., Clifford, D.M., Marinco, S.M. & Bartrand, A.J. Replication protein A is sequentially phosphorylated during meiosis. Nucleic Acids Res. 29, 4808–4817 (2001).
    Article CAS Google Scholar
  8. Schramke, V. et al. The set1Δ mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of replication protein A that leads to transcriptional activation of repair genes. Genes Dev. 15, 1845–1858 (2001).
    Article CAS Google Scholar
  9. McEachern, M.J., Krauskopf, A. & Blackburn, EH. Telomeres and their control. Annu. Rev. Genet. 34, 331–358 (2000).
    Article CAS Google Scholar
  10. Nugent, C.I. & Lundblad, V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073–1085 (1998).
    Article CAS Google Scholar
  11. Price, C.M. Synthesis of the telomeric C-strand. A review. Biochemistry 62, 1216–1223 (1997).
    CAS PubMed Google Scholar
  12. Wellinger, R.J., Wolf, A.J. & Zakian, V.A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72, 51–60 (1993).
    Article CAS Google Scholar
  13. Lin, J.J. & Zakian, V.A. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93, 13760–13765 (1996).
    Article CAS Google Scholar
  14. Evans, S.K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science 286, 117–120 (1999).
    Article CAS Google Scholar
  15. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).
    Article CAS Google Scholar
  16. Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 18, 3509–3519 (1999).
    Article CAS Google Scholar
  17. Diede, S.J. & Gottschling, D.E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell 99, 723–733 (1999).
    Article CAS Google Scholar
  18. Taggart, A.K., Teng, S.C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002).
    Article CAS Google Scholar
  19. Smith, C.D., Smith, D.L., DeRisi, J.L. & Blackburn, E.H. Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol. Biol. Cell. 14, 556–570 (2003).
    Article CAS Google Scholar
  20. Bourns, B.D., Alexander, M.K., Smith, A.M. & Zakian, V.A. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18, 5600–5608 (1998).
    Article CAS Google Scholar
  21. Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741–744 (1998).
    Article CAS Google Scholar
  22. Huffman, K.E., Levene, S.D., Tesmer, V.M., Shay, J.W. & Wright, W.E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem. 275, 19719–19722 (2000).
    Article CAS Google Scholar
  23. Greenwell, P.W. et al. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82, 823–829 (1995).
    Article CAS Google Scholar
  24. Craven, R.J. & Petes, T.D. Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae. Genetics 152, 1531–1541 (1999).
    CAS PubMed PubMed Central Google Scholar
  25. Peterson, S.E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat. Genet. 27, 64–67 (2001).
    Article CAS Google Scholar
  26. Polotnianka, R.M., Li, J. & Lustig, A.J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8, 831–834 (1998).
    Article CAS Google Scholar
  27. Dornreiter, I. et al. Interaction of DNA polymerase α-primase with cellular replication protein A and SV40-T antigen. EMBO J. 11, 769–776 (1992).
    Article CAS Google Scholar
  28. Longhese, M.P., Neecke, H., Paciotti, V., Lucchini, G. & Plevani, P. The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucleic Acids Res. 24, 3533–3537 (1996).
    Article CAS Google Scholar
  29. Ritchie, K.B. & Petes, T.D. The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155, 475–479 (2000).
    CAS PubMed PubMed Central Google Scholar
  30. Chan, S.W., Chang, J., Prescott, J. & Blackburn, E.H. Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr. Biol. 11, 1240–1250 (2001).
    Article CAS Google Scholar
  31. Tsukamoto, Y., Taggart, A.K. & Zakian, V.A. The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11, 1328–1335 (2001).
    Article CAS Google Scholar
  32. Maniar, H.S., Wilson, R. & Brill, S.J. Roles of replication protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae. Genetics 145, 891–902 (1997).
    CAS PubMed PubMed Central Google Scholar
  33. Mallory, J.C. et al. Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae. DNA Repair 2, 1041–1064 (2003).
    Article CAS Google Scholar
  34. Reichenbach, P. et al. A human homolog of yeast est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).
    Article CAS Google Scholar
  35. Snow, B.E. et al. Functional conservation of the telomerase protein est1p in humans. Curr. Biol. 13, 698–704 (2003).
    Article CAS Google Scholar
  36. Tanaka, T. & Nasmyth, K. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J. 17, 5182–5191 (1998).
    Article CAS Google Scholar
  37. Martin, S.G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S.M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).
    Article CAS Google Scholar

Download references