RPA regulates telomerase action by providing Est1p access to chromosome ends (original) (raw)
References
Longhese, M.P., Plevani, P. & Lucchini, G. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol.14, 7884–7890 (1994). ArticleCAS Google Scholar
Wold, M.S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem.66, 61–92 (1997). ArticleCAS Google Scholar
Smith, J., Zou, H. & Rothstein, R. Characterization of genetic interactions with RFA1: the role of RPA in DNA replication and telomere maintenance. Biochimie82, 71–78 (2000). ArticleCAS Google Scholar
Brill, S.J. & Stillman, B. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev.5, 1589–1600 (1991). ArticleCAS Google Scholar
Brush, G.S., Morrow, D.M., Hieter, P. & Kelly, T.J. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl. Acad. Sci. USA93, 15075–15080 (1996). ArticleCAS Google Scholar
Brush, G.S. & Kelly, T.J. Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response. Nucleic Acids Res.19, 3725–3732 (2000). Article Google Scholar
Brush, G.S., Clifford, D.M., Marinco, S.M. & Bartrand, A.J. Replication protein A is sequentially phosphorylated during meiosis. Nucleic Acids Res.29, 4808–4817 (2001). ArticleCAS Google Scholar
Schramke, V. et al. The set1Δ mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of replication protein A that leads to transcriptional activation of repair genes. Genes Dev.15, 1845–1858 (2001). ArticleCAS Google Scholar
McEachern, M.J., Krauskopf, A. & Blackburn, EH. Telomeres and their control. Annu. Rev. Genet.34, 331–358 (2000). ArticleCAS Google Scholar
Nugent, C.I. & Lundblad, V. The telomerase reverse transcriptase: components and regulation. Genes Dev.12, 1073–1085 (1998). ArticleCAS Google Scholar
Price, C.M. Synthesis of the telomeric C-strand. A review. Biochemistry62, 1216–1223 (1997). CASPubMed Google Scholar
Wellinger, R.J., Wolf, A.J. & Zakian, V.A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell72, 51–60 (1993). ArticleCAS Google Scholar
Lin, J.J. & Zakian, V.A. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA93, 13760–13765 (1996). ArticleCAS Google Scholar
Evans, S.K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science286, 117–120 (1999). ArticleCAS Google Scholar
Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell104, 387–396 (2001). ArticleCAS Google Scholar
Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J.18, 3509–3519 (1999). ArticleCAS Google Scholar
Diede, S.J. & Gottschling, D.E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell99, 723–733 (1999). ArticleCAS Google Scholar
Taggart, A.K., Teng, S.C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science297, 1023–1026 (2002). ArticleCAS Google Scholar
Smith, C.D., Smith, D.L., DeRisi, J.L. & Blackburn, E.H. Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol. Biol. Cell.14, 556–570 (2003). ArticleCAS Google Scholar
Bourns, B.D., Alexander, M.K., Smith, A.M. & Zakian, V.A. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol.18, 5600–5608 (1998). ArticleCAS Google Scholar
Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science280, 741–744 (1998). ArticleCAS Google Scholar
Huffman, K.E., Levene, S.D., Tesmer, V.M., Shay, J.W. & Wright, W.E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem.275, 19719–19722 (2000). ArticleCAS Google Scholar
Greenwell, P.W. et al. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell82, 823–829 (1995). ArticleCAS Google Scholar
Craven, R.J. & Petes, T.D. Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae. Genetics152, 1531–1541 (1999). CASPubMedPubMed Central Google Scholar
Peterson, S.E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat. Genet.27, 64–67 (2001). ArticleCAS Google Scholar
Polotnianka, R.M., Li, J. & Lustig, A.J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol.8, 831–834 (1998). ArticleCAS Google Scholar
Dornreiter, I. et al. Interaction of DNA polymerase α-primase with cellular replication protein A and SV40-T antigen. EMBO J.11, 769–776 (1992). ArticleCAS Google Scholar
Longhese, M.P., Neecke, H., Paciotti, V., Lucchini, G. & Plevani, P. The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucleic Acids Res.24, 3533–3537 (1996). ArticleCAS Google Scholar
Ritchie, K.B. & Petes, T.D. The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics155, 475–479 (2000). CASPubMedPubMed Central Google Scholar
Chan, S.W., Chang, J., Prescott, J. & Blackburn, E.H. Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr. Biol.11, 1240–1250 (2001). ArticleCAS Google Scholar
Tsukamoto, Y., Taggart, A.K. & Zakian, V.A. The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol.11, 1328–1335 (2001). ArticleCAS Google Scholar
Maniar, H.S., Wilson, R. & Brill, S.J. Roles of replication protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae. Genetics145, 891–902 (1997). CASPubMedPubMed Central Google Scholar
Mallory, J.C. et al. Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae. DNA Repair2, 1041–1064 (2003). ArticleCAS Google Scholar
Reichenbach, P. et al. A human homolog of yeast est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol.13, 568–574 (2003). ArticleCAS Google Scholar
Snow, B.E. et al. Functional conservation of the telomerase protein est1p in humans. Curr. Biol.13, 698–704 (2003). ArticleCAS Google Scholar
Tanaka, T. & Nasmyth, K. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J.17, 5182–5191 (1998). ArticleCAS Google Scholar
Martin, S.G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S.M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell97, 621–633 (1999). ArticleCAS Google Scholar