- Chang, J.C. & Kan, Y.W. Beta-thalassemia, a nonsense mutation in man. Proc. Natl. Acad. Sci. USA 76, 2886–2889 (1979).
CAS PubMed PubMed Central Google Scholar
- Losson, R. & Lacroute, F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl. Acad. Sci. USA 76, 5134–5137 (1979).
CAS PubMed PubMed Central Google Scholar
- Brogna, S. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3′ end processing of the corresponding pre-mRNA. RNA 5, 562–573 (1999).
CAS PubMed PubMed Central Google Scholar
- Pulak, R. & Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7, 1885–1897 (1993).
CAS PubMed Google Scholar
- Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).
CAS PubMed Google Scholar
- Brocke, K.S., Neu-Yilik, G., Gehring, N.H., Hentze, M.W. & Kulozik, A.E. The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum. Mol. Genet. 11, 331–335 (2002).
CAS PubMed Google Scholar
- Maquat, L.E. & Li, X. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA 7, 445–456 (2001).
CAS PubMed PubMed Central Google Scholar
- Neu-Yilik, G. et al. Splicing and 3′ end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs. EMBO J. 20, 532–540 (2001).
CAS PubMed PubMed Central Google Scholar
- Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).
CAS PubMed PubMed Central Google Scholar
- Kim, V.N. et al. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J. 20, 2062–2068 (2001).
CAS PubMed PubMed Central Google Scholar
- Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).
CAS PubMed Google Scholar
- Atkin, A.L. et al. Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J. Biol. Chem. 272, 22163–22172 (1997).
CAS PubMed Google Scholar
- Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).
CAS PubMed PubMed Central Google Scholar
- Pal, M., Ishigaki, Y., Nagy, E. & Maquat, L.E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7, 5–15 (2001).
CAS PubMed PubMed Central Google Scholar
- Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).
CAS PubMed Google Scholar
- Chiu, S.Y., Serin, G., Ohara, O. & Maquat, L.E. Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77–87 (2003).
CAS PubMed PubMed Central Google Scholar
- Page, M.F., Carr, B., Anders, K.R., Grimson, A. & Anderson, P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell. Biol. 19, 5943–5951 (1999).
CAS PubMed PubMed Central Google Scholar
- Schell, T., Kulozik, A.E. & Hentze, M.W. Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol. 3, Reviews 1006.1–1006.6 (2002).
Google Scholar
- Singh, G. & Lykke-Andersen, J. New insights into the formation of active nonsense-mediated decay complexes. Trends Biochem. Sci. 28, 464–466 (2003).
CAS PubMed Google Scholar
- Wilkinson, M.F. The cycle of nonsense. Mol. Cell 12, 1059–1061 (2003).
CAS PubMed Google Scholar
- Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).
CAS PubMed Google Scholar
- Wang, J., Gudikote, J.P., Olivas, O.R. & Wilkinson, M.F. Boundary-independent polar nonsense-mediated decay. EMBO Rep. 3, 274–279 (2002).
CAS PubMed PubMed Central Google Scholar
- Chan, D., Weng, Y.M., Graham, H.K., Sillence, D.O. & Bateman, J.F. A nonsense mutation in the carboxyl-terminal domain of type X collagen causes haploinsufficiency in schmid metaphyseal chondrodysplasia. J. Clin. Invest. 101, 1490–1499. (1998).
CAS PubMed PubMed Central Google Scholar
- Asselta, R. et al. Congenital afibrinogenemia: mutations leading to premature termination codons in fibrinogen A alpha-chain gene are not associated with the decay of the mutant mRNAs. Blood 98, 3685–3692. (2001).
CAS PubMed Google Scholar
- Danckwardt, S. et al. Abnormally spliced beta-globin mRNAs: a single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood 99, 1811–1816 (2002).
CAS PubMed Google Scholar
- Romao, L. et al. Nonsense mutations in the human beta-globin gene lead to unexpected levels of cytoplasmic mRNA accumulation. Blood 96, 2895–2901 (2000).
CAS PubMed Google Scholar
- Mango, S.E. Stop making nonSense: the C. elegans smg genes. Trends Genet. 17, 646–653 (2001).
CAS PubMed Google Scholar
- Bamber, B.A., Beg, A.A., Twyman, R.E. & Jorgensen, E.M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).
CAS PubMed PubMed Central Google Scholar
- Chester, A. et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 22, 3971–3982 (2003).
CAS PubMed PubMed Central Google Scholar
- Bateman, J.F., Freddi, S., Nattrass, G. & Savarirayan, R. Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum. Mol. Genet. 12, 217–225 (2003).
CAS PubMed Google Scholar
- Kerr, T.P., Sewry, C.A., Robb, S.A. & Roberts, R.G. Long mutant dystrophins and variable phenotypes: evasion of nonsense-mediated decay? Hum. Genet. 109, 402–407 (2001).
CAS PubMed Google Scholar
- Donnadieu, E. et al. Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene. Immunity 18, 665–674 (2003).
CAS PubMed Google Scholar
- Li, S. & Wilkinson, M.F. Nonsense surveillance in lymphocytes? Immunity 8, 135–141 (1998).
CAS PubMed Google Scholar
- Frischmeyer, P.A. & Dietz, H.C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900 (1999).
CAS PubMed Google Scholar
- Blaschke, R.J. et al. Transcriptional and translational regulation of the Leri-Weill and Turner syndrome homeobox gene SHOX. J. Biol. Chem. 278, 47820–47826 (2003).
CAS PubMed Google Scholar
- Moriarty, P.M., Reddy, C.C. & Maquat, L.E. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol. 18, 2932–2939 (1998).
CAS PubMed PubMed Central Google Scholar
- Sun, X. et al. Nonsense-mediated decay of mRNA for the selenoprotein phospholipid hydroperoxide glutathione peroxidase is detectable in cultured cells but masked or inhibited in rat tissues. Mol. Biol. Cell 12, 1009–1017 (2001).
CAS PubMed PubMed Central Google Scholar
- Lewis, B.P., Green, R.E. & Brenner, S.E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. USA 100, 189–192 (2003).
CAS PubMed Google Scholar
- Green, R.E. et al. Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 19 Suppl 1, I118–I121 (2003).
PubMed Google Scholar
- Lamba, J.K. et al. Nonsense mediated decay downregulates conserved alternatively spliced ABCC4 transcripts bearing nonsense codons. Hum. Mol. Genet. 12, 99–109 (2003).
CAS PubMed Google Scholar
- Gouya, L. et al. The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat. Genet. 30, 27–28 (2002).
CAS PubMed Google Scholar
- Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).
CAS PubMed PubMed Central Google Scholar
- Wollerton, M.C., Gooding, C., Wagner, E.J., Garcia-Blanco, M.A. & Smith, C.W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).
CAS PubMed Google Scholar
- Snow, B.E. et al. Functional conservation of the telomerase protein EST1p in humans. Curr. Biol. 13, 698–704 (2003).
CAS PubMed Google Scholar
- Reichenbach, P. et al. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).
CAS PubMed Google Scholar
- Neu-Yilik, G., Gehring, N.H., Hentze, M.W. & Kulozik, A.E. Nonsense-mediated mRNA decay: from vacuum cleaner to Swiss army knife. Genome Biol. 5, 218.1–218.4 (2004).
Google Scholar
- Medghalchi, S.M. et al. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum. Mol. Genet. 10, 99–105 (2001).
CAS PubMed Google Scholar
- Pelczar, P. & Filipowicz, W. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol. Cell. Biol. 18, 4509–4518 (1998).
CAS PubMed PubMed Central Google Scholar
- Tycowski, K.T., Shu, M.D. & Steitz, J.A. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466 (1996).
CAS PubMed Google Scholar
- Ruiz-Echevarria, M.J., Czaplinski, K. & Peltz, S.W. Making sense of nonsense in yeast. Trends Biochem. Sci. 21, 433–438 (1996).
CAS PubMed Google Scholar
- Hall, G.W. & Thein, S. Nonsense codon mutations in the terminal exon of the beta-globin gene are not associated with a reduction in beta-mRNA accumulation: a mechanism for the phenotype of dominant beta-thalassemia. Blood 83, 2031–2037 (1994).
CAS PubMed Google Scholar
- Thein, S.L. et al. Molecular basis for dominantly inherited inclusion body beta-thalassemia. Proc. Natl. Acad. Sci. USA 87, 3924–3928 (1990).
CAS PubMed PubMed Central Google Scholar
- Kugler, W., Enssle, J., Hentze, M.W. & Kulozik, A.E. Nuclear degradation of nonsense mutated beta-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res. 23, 413–418 (1995).
CAS PubMed PubMed Central Google Scholar
- Jouanguy, E. et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).
CAS PubMed Google Scholar
- Jouanguy, E. et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat. Genet. 21, 370–378 (1999).
CAS PubMed Google Scholar
- Schwabe, G.C. et al. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am. J. Hum. Genet. 67, 822–831. (2000).
CAS PubMed PubMed Central Google Scholar
- Schneppenheim, R. et al. Expression and characterization of von Willebrand factor dimerization defects in different types of von Willebrand disease. Blood 97, 2059–2066 (2001).
CAS PubMed Google Scholar
- Millar, D.S. et al. Molecular analysis of the genotype-phenotype relationship in factor X deficiency. Hum. Genet. 106, 249–257 (2000).
CAS PubMed Google Scholar
- Rivolta, C., Berson, E.L. & Dryja, T.P. Dominant Leber congenital amaurosis, cone-rod degeneration, and retinitis pigmentosa caused by mutant versions of the transcription factor CRX. Hum. Mutat. 18, 488–498 (2001).
CAS PubMed Google Scholar
- Rosenfeld, P.J. et al. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat. Genet. 1, 209–213 (1992).
CAS PubMed Google Scholar
- Sung, C.H. et al. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 88, 6481–6485 (1991).
CAS PubMed PubMed Central Google Scholar
- Inoue, K. et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat. Genet. 36, 361–369 (2004).
CAS PubMed Google Scholar
- Perrin-Vidoz, L., Sinilnikova, O.M., Stoppa-Lyonnet, D., Lenoir, G.M. & Mazoyer, S. The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum. Mol. Genet. 11, 2805–2814 (2002).
CAS PubMed Google Scholar
- Kawasaki, T. et al. mRNA and protein expression of p53 mutations in human bladder cancer cell lines. Cancer Lett. 82, 113–121 (1994).
CAS PubMed Google Scholar
- Williams, C. et al. Assessment of sequence-based p53 gene analysis in human breast cancer: messenger RNA in comparison with genomic DNA targets. Clin. Chem. 44, 455–462 (1998).
CAS PubMed Google Scholar
- Magnusson, K.P. et al. p53 splice acceptor site mutation and increased HsRAD51 protein expression in Bloom's syndrome GM1492 fibroblasts. Gene 246, 247–254 (2000).
CAS PubMed Google Scholar
- Usuda, J. et al. Restoration of p53 gene function in 12-O-tetradecanoylphorbor 13-acetate-resistant human leukemia K562/TPA cells. Int. J. Oncol. 22, 81–86 (2003).
CAS PubMed Google Scholar
- King-Underwood, L. & Pritchard-Jones, K. Wilms' tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood 91, 2961–2981 (1998).
CAS PubMed Google Scholar
- Fan, S. et al. Mutant BRCA1 genes antagonize phenotype of wild-type BRCA1. Oncogene 20, 8215–8235 (2001).
CAS PubMed Google Scholar
- Sylvain, V., Lafarge, S. & Bignon, Y.J. Dominant-negative activity of a Brca1 truncation mutant: effects on proliferation, tumorigenicity in vivo, and chemosensitivity in a mouse ovarian cancer cell line. Int. J. Oncol. 20, 845–853 (2002).
CAS PubMed Google Scholar
- Cardinali, M., Kratochvil, F.J., Ensley, J.F., Robbins, K.C. & Yeudall, W.A. Functional characterization in vivo of mutant p53 molecules derived from squamous cell carcinomas of the head and neck. Mol. Carcinog. 18, 78–88 (1997).
CAS PubMed Google Scholar
- Reddy, J.C. et al. WT1-mediated transcriptional activation is inhibited by dominant negative mutant proteins. J. Biol. Chem. 270, 10878–10884 (1995).
CAS PubMed Google Scholar
- Englert, C. et al. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein. Proc. Natl. Acad. Sci. USA 92, 11960–11964 (1995).
CAS PubMed PubMed Central Google Scholar
- Flaman, J.M. et al. The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene 12, 813–818 (1996).
CAS PubMed Google Scholar
- Chow, V.T., Quek, H.H. & Tock, E.P. Alternative splicing of the p53 tumor suppressor gene in the Molt-4 T-lymphoblastic leukemia cell line. Cancer Lett. 73, 141–148 (1993).
CAS PubMed Google Scholar
- King-Underwood, L., Renshaw, J. & Pritchard-Jones, K. Mutations in the Wilms' tumor gene WT1 in leukemias. Blood 87, 2171–2179 (1996).
CAS PubMed Google Scholar
- Little, M.H. et al. Zinc finger point mutations within the WT1 gene in Wilms tumor patients. Proc. Natl. Acad. Sci. USA 89, 4791–4795 (1992).
CAS PubMed PubMed Central Google Scholar
- Kohsaka, T. et al. Exon 9 mutations in the WT1 gene, without influencing KTS splice isoforms, are also responsible for Frasier syndrome. Hum. Mutat. 14, 466–470 (1999).
CAS PubMed Google Scholar
- Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).
CAS PubMed Google Scholar
- Klamt, B. et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum. Mol. Genet. 7, 709–714 (1998).
CAS PubMed Google Scholar
- Eustice, D.C. & Wilhelm, J.M. Fidelity of the eukaryotic codon-anticodon interaction: interference by aminoglycoside antibiotics. Biochemistry 23, 1462–1467 (1984).
CAS PubMed Google Scholar
- Zsembery, A. et al. Correction of CFTR malfunction and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells. Hepatology 35, 95–104 (2002).
CAS PubMed Google Scholar
- Bedwell, D.M. et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat. Med. 3, 1280–1284 (1997).
CAS PubMed Google Scholar
- Keeling, K.M. et al. Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum. Mol. Genet 10, 291–299 (2001).
CAS PubMed Google Scholar
- Barton-Davis, E.R., Cordier, L., Shoturma, D.I., Leland, S.E. & Sweeney, H.L. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest. 104, 375–381 (1999).
CAS PubMed PubMed Central Google Scholar
- Du, M. et al. Aminoglycoside suppression of a premature stop mutation in a Cftr−/− mouse carrying a human CFTR-G542X transgene. J. Mol. Med. 80, 595–604 (2002).
CAS PubMed Google Scholar
- Sangkuhl, K. et al. Aminoglycoside-mediated rescue of a disease-causing nonsense mutation in the V2 vasopressin receptor gene in vitro and in vivo. Hum. Mol. Genet. 13, 893–903 (2004).
CAS PubMed Google Scholar
- Dunant, P., Walter, M.C., Karpati, G. & Lochmuller, H. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 27, 624–627 (2003).
CAS PubMed Google Scholar
- Wilschanski, M. et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441 (2003).
CAS PubMed Google Scholar
- Wilschanski, M. et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am. J. Respir. Crit. Care Med. 161, 860–865 (2000).
CAS PubMed Google Scholar
- Clancy, J.P. et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 163, 1683–1692 (2001).
CAS PubMed Google Scholar
- Wagner, K.R. et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann. Neurol. 49, 706–711 (2001).
CAS PubMed Google Scholar
- Politano, L. et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 22, 15–21 (2003).
CAS PubMed Google Scholar
- Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 90, 8673–8677 (1993).
CAS PubMed PubMed Central Google Scholar
- Mann, C.J. et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl. Acad. Sci. USA 98, 42–47 (2001).
CAS PubMed Google Scholar
- Lu, Q.L. et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat. Med. 9, 1009–1014 (2003).
CAS PubMed Google Scholar
- Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).
CAS PubMed Google Scholar
- Palacios, I.M., Gatfield, D., St Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).
CAS PubMed Google Scholar
- Ferraiuolo, M.A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 101, 4118–4123 (2004).
CAS PubMed PubMed Central Google Scholar
- Bono, F. et al. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 5, 304–310 (2004).
CAS PubMed PubMed Central Google Scholar