Active genes dynamically colocalize to shared sites of ongoing transcription (original) (raw)
References
Brown, K.E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell91, 845–854 (1997). ArticleCAS Google Scholar
Brown, K.E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A.G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell3, 207–217 (1999). ArticleCAS Google Scholar
Francastel, C., Walters, M.C., Groudine, M. & Martin, D.I. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin. Cell99, 259–269 (1999). ArticleCAS Google Scholar
Brown, K.E. et al. Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells. Nat. Cell Biol.3, 602–606 (2001). ArticleCAS Google Scholar
Schubeler, D. et al. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev.14, 940–950 (2000). CASPubMedPubMed Central Google Scholar
Wang, J. et al. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J. Cell Biol.164, 515–526 (2004). ArticleCAS Google Scholar
Jackson, D.A., Hassan, A.B., Errington, R.J. & Cook, P.R. Visualization of focal sites of transcription within human nuclei. EMBO J.12, 1059–1065 (1993). ArticleCAS Google Scholar
Iborra, F.J., Pombo, A., Jackson, D.A. & Cook, P.R. Active RNA polymerases are localized within discrete transcription 'factories' in human nuclei. J. Cell Sci.109, 1427–1436 (1996). CASPubMed Google Scholar
Grande, M.A., van der Kraan, I., de Jong, L. & van Driel, R. Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. J. Cell Sci.110, 1781–1791 (1997). CASPubMed Google Scholar
Jackson, D.A., Iborra, F.J., Manders, E.M. & Cook, P.R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell9, 1523–1536 (1998). ArticleCAS Google Scholar
Verschure, P.J., van Der Kraan, I., Manders, E.M. & van Driel, R. Spatial relationship between transcription sites and chromosome territories. J. Cell Biol.147, 13–24 (1999). ArticleCAS Google Scholar
Zaidi, S.K. et al. Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc. Natl. Acad. Sci. USA99, 8048–8053 (2002). ArticleCAS Google Scholar
Trimborn, T., Gribnau, J., Grosveld, F. & Fraser, P. Mechanisms of developmental control of transcription in the murine α- and β-globin loci. Genes Dev.13, 112–124 (1999). ArticleCAS Google Scholar
Kihm, A.J. et al. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature417, 758–763 (2002). ArticleCAS Google Scholar
Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo. Nature377, 209–213 (1995). ArticleCAS Google Scholar
Ross, I.L., Browne, C.M. & Hume, D.A. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol.72, 177–185 (1994). ArticleCAS Google Scholar
Kimura, H., Sugaya, K. & Cook, P.R. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol.159, 777–782 (2002). ArticleCAS Google Scholar
Milot, E. et al. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell87, 105–114 (1996). ArticleCAS Google Scholar
Hunt, J.A. Rate of synthesis and half-life of globin messenger ribonucleic acid. Rate of synthesis of globin messenger ribonucleic acid calculated from data of cell haemoglobin content. Biochem. J.138, 499–510 (1974). ArticleCAS Google Scholar
Osheim, Y.N., Miller, O.L., Jr. & Beyer, A.L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell43, 143–151 (1985). ArticleCAS Google Scholar
Solovei, I. et al. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp. Cell Res.276, 10–23 (2002). ArticleCAS Google Scholar
Mahy, N.L., Perry, P.E. & Bickmore, W.A. Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J. Cell Biol.159, 753–763 (2002). ArticleCAS Google Scholar
Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nat. Genet.32, 623–626 (2002). ArticleCAS Google Scholar
Chambeyron, S. & Bickmore, W.A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev.18, 1119–1130 (2004). ArticleCAS Google Scholar
Ragoczy, T., Telling, A., Sawado, T., Groudine, M. & Kosak, S.T. A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res.11, 513–525 (2003). ArticleCAS Google Scholar
Shopland, L.S., Johnson, C.V., Byron, M., McNeil, J. & Lawrence, J.B. Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J. Cell Biol.162, 981–990 (2003). ArticleCAS Google Scholar
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science295, 1306–1311 (2002). ArticleCAS Google Scholar
Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell10, 1453–1465 (2002). ArticleCAS Google Scholar
Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ. Science280, 585–590 (1998). ArticleCAS Google Scholar
Vazquez, J., Belmont, A.S. & Sedat, J.W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol.11, 1227–1239 (2001). ArticleCAS Google Scholar
Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S.M. Chromosome dynamics in the yeast interphase nucleus. Science294, 2181–2186 (2001). ArticleCAS Google Scholar
Chubb, J.R., Boyle, S., Perry, P. & Bickmore, W.A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol.12, 439–445 (2002). ArticleCAS Google Scholar
Volpi, E.V. et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci.113, 1565–1576 (2000). CASPubMed Google Scholar
Mahy, N.L., Perry, P.E., Gilchrist, S., Baldock, R.A. & Bickmore, W.A. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J. Cell Biol.157, 579–589 (2002). ArticleCAS Google Scholar
Lukasova, E. et al. Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia. Hum. Genet.100, 525–535 (1997). ArticleCAS Google Scholar
Neves, H., Ramos, C., da Silva, M.G., Parreira, A. & Parreira, L. The nuclear topography of ABL, BCR, PML, and _RAR_α genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood93, 1197–1207 (1999). CASPubMed Google Scholar
Parada, L.A., McQueen, P.G., Munson, P.J. & Misteli, T. Conservation of relative chromosome positioning in normal and cancer cells. Curr. Biol.12, 1692–1697 (2002). ArticleCAS Google Scholar
Roix, J.J., McQueen, P.G., Munson, P.J., Parada, L.A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet.34, 287–291 (2003). ArticleCAS Google Scholar
Walter, J., Schermelleh, L., Cremer, M., Tashiro, S. & Cremer, T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol.160, 685–697 (2003). ArticleCAS Google Scholar
Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell112, 751–764 (2003). ArticleCAS Google Scholar
Bolland, D.J. et al. Antisense intergenic transcription in V(D)J recombination. Nat. Immunol.5, 630–637 (2004). ArticleCAS Google Scholar
Versteeg, R. et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res.13, 1998–2004 (2003). ArticleCAS Google Scholar
Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science291, 1289–1292 (2001). ArticleCAS Google Scholar
Sutherland, H.G., Martin, D.I. & Whitelaw, E. A globin enhancer acts by increasing the proportion of erythrocytes expressing a linked transgene. Mol. Cell. Biol.17, 1607–1614 (1997). ArticleCAS Google Scholar
Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol.155, 181–185 (2001). ArticleCAS Google Scholar
Cook, P.R. Predicting three-dimensional genome structure from transcriptional activity. Nat. Genet.32, 347–352 (2002). ArticleCAS Google Scholar
Dickerman, H.W., Cheng, T.C., Kazazian, H.H. Jr. & Spivak, J.L. The erythropoietic mouse spleen-a model system of development. Arch. Biochem. Biophys.177, 1–9 (1976). ArticleCAS Google Scholar
Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell5, 377–386 (2000). ArticleCAS Google Scholar
Chakalova, L., Carter, D. & Fraser, P. RNA fluorescence in situ hybridization tagging and recovery of associated proteins to analyze in vivo chromatin interactions. Methods Enzymol.375, 479–493 (2004). ArticleCAS Google Scholar