Antisense intergenic transcription in V(D)J recombination (original) (raw)

References

  1. Chevillard, C., Ozaki, J., Herring, C.D. & Riblet, R. A three-megabase yeast artificial chromosome contig spanning the C57BL mouse Igh locus. J. Immunol. 168, 5659–5666 (2002).
    Article CAS Google Scholar
  2. Krangel, M.S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).
    Article CAS Google Scholar
  3. Yancopoulos, G.D. & Alt, F.W. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40, 271–281 (1985).
    Article CAS Google Scholar
  4. Corcoran, A.E., Riddell, A., Krooshoop, D. & Venkitaraman, A.R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907 (1998).
    Article CAS Google Scholar
  5. Angelin-Duclos, C. & Calame, K. Evidence that immunoglobulin VH-DJ recombination does not require germ line transcription of the recombining variable gene segment. Mol. Cell. Biol. 18, 6253–6264 (1998).
    Article CAS Google Scholar
  6. Haines, B.B. & Brodeur, P.H. Accessibility changes across the mouse _Igh_-V locus during B cell development. Eur. J. Immunol. 28, 4228–4235 (1998).
    Article CAS Google Scholar
  7. Nelson, K.J., Haimovich, J. & Perry, R.P. Characterization of productive and sterile transcripts from the immunoglobulin heavy-chain locus: processing of micron and μS mRNA. Mol. Cell. Biol. 3, 1317–1332 (1983).
    Article CAS Google Scholar
  8. Schlissel, M.S., Corcoran, L.M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991).
    Article CAS Google Scholar
  9. Duber, S., Engel, H., Rolink, A., Kretschmer, K. & Weiss, S. Germline transcripts of immunoglobulin light chain variable regions are structurally diverse and differentially expressed. Mol. Immunol. 40, 509–516 (2003).
    Article CAS Google Scholar
  10. Goldman, J.P., Spencer, D.M. & Raulet, D.H. Ordered rearrangement of variable region genes of the T cell receptor γ locus correlates with transcription of the unrearranged genes. J. Exp. Med. 177, 729–739 (1993).
    Article CAS Google Scholar
  11. Sleckman, B.P., Gorman, J.R. & Alt, F.W. Accessibility control of antigen-receptor variable-region gene assembly: role of _cis_-acting elements. Annu. Rev. Immunol. 14, 459–481 (1996).
    Article CAS Google Scholar
  12. Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro . Cell 85, 887–897. (1996).
    Article CAS Google Scholar
  13. Mostoslavsky, R. et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).
    Article CAS Google Scholar
  14. McBlane, F. & Boyes, J. Stimulation of V(D)J recombination by histone acetylation. Curr. Biol. 10, 483–486 (2000).
    Article CAS Google Scholar
  15. McMurry, M.T. & Krangel, M.S. A role for histone acetylation in the developmental regulation of VDJ recombination. Science 287, 495–498 (2000).
    Article CAS Google Scholar
  16. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).
    Article CAS Google Scholar
  17. Johnson, K., Angelin-Duclos, C., Park, S. & Calame, K.L. Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol. Cell. Biol. 23, 2438–2450 (2003).
    Article CAS Google Scholar
  18. Morshead, K.B., Ciccone, D.N., Taverna, S.D., Allis, C.D. & Oettinger, M.A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl. Acad. Sci. USA 100, 11577–11582 (2003).
    Article CAS Google Scholar
  19. Maes, J. et al. Chromatin remodeling at the Ig loci prior to V(D)J recombination. J. Immunol. 167, 866–874 (2001).
    Article CAS Google Scholar
  20. Golding, A., Chandler, S., Ballestar, E., Wolffe, A.P. & Schlissel, M.S. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J. 18, 3712–3723 (1999).
    Article CAS Google Scholar
  21. Kwon, J., Morshead, K.B., Guyon, J.R., Kingston, R.E. & Oettinger, M.A. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol. Cell 6, 1037–1048 (2000).
    Article CAS Google Scholar
  22. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell 5, 377–386 (2000).
    Article CAS Google Scholar
  23. Li, Y.S., Hayakawa, K. & Hardy, R.R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178, 951–960 (1993).
    Article CAS Google Scholar
  24. Allman, D., Li, J. & Hardy, R.R. Commitment to the B lymphoid lineage occurs before DH-JH recombination. J. Exp. Med. 189, 735–740 (1999).
    Article CAS Google Scholar
  25. Rolink, A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194 (1996).
    Article CAS Google Scholar
  26. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).
    Article CAS Google Scholar
  27. Lennon, G.G. & Perry, R.P. Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 318, 475–478 (1985).
    Article CAS Google Scholar
  28. de Krom, M., van de Corput, M., von Lindern, M., Grosveld, F. & Strouboulis, J. Stochastic patterns in globin gene expression are established prior to transcriptional activation and are clonally inherited. Mol. Cell 9, 1319–1326 (2002).
    Article CAS Google Scholar
  29. Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).
    Article CAS Google Scholar
  30. Li, Y.S., Wasserman, R., Hayakawa, K. & Hardy, R.R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535 (1996).
    Article CAS Google Scholar
  31. Ehlich, A., Martin, V., Muller, W. & Rajewsky, K. Analysis of the B-cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573–583 (1994).
    Article CAS Google Scholar
  32. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).
    Article CAS Google Scholar
  33. Skok, J.A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854 (2001).
    Article CAS Google Scholar
  34. Trimborn, T., Gribnau, J., Grosveld, F. & Fraser, P. Mechanisms of developmental control of transcription in the murine α- and β-globin loci. Genes Dev. 13, 112–124 (1999).
    Article CAS Google Scholar
  35. Allshire, R. Molecular biology. RNAi and heterochromatin—a hushed-up affair. Science 297, 1818–1819 (2002).
    Article CAS Google Scholar
  36. Vanhee-Brossollet, C. & Vaquero, C. Do natural antisense transcripts make sense in eukaryotes? Gene 211, 1–9 (1998).
    Article CAS Google Scholar
  37. Sleutels, F., Zwart, R. & Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).
    Article CAS Google Scholar
  38. Hebbes, T.R., Clayton, A.L., Thorne, A.W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13, 1823–1830 (1994).
    Article CAS Google Scholar
  39. Orphanides, G. & Reinberg, D. RNA polymerase II elongation through chromatin. Nature 407, 471–475 (2000).
    Article CAS Google Scholar
  40. Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–2140 (2003).
    Article CAS Google Scholar
  41. Schlissel, M.S. & Morrow, T. Ig heavy chain protein controls B cell development by regulating germ-line transcription and retargeting V(D)J recombination. J. Immunol. 153, 1645–1657 (1994).
    CAS PubMed Google Scholar
  42. Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).
    Article CAS Google Scholar
  43. Tripathi, R., Jackson, A. & Krangel, M.S. A change in the structure of Vβ chromatin associated with TCRβ allelic exclusion. J. Immunol. 168, 2316–2324 (2002).
    Article CAS Google Scholar
  44. Stevenson, D.S. & Jarvis, P. Chromatin silencing: RNA in the driving seat. Curr. Biol. 13, R13–R15 (2003).
    Article CAS Google Scholar
  45. Su, I.H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).
    Article CAS Google Scholar
  46. Urbanek, P., Wang, Z.Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).
    Article CAS Google Scholar
  47. Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).
    Article CAS Google Scholar
  48. Shendure, J. & Church, G.M. Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol. 3, 0044.1–0044.14 (2002).
    Article Google Scholar
  49. Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. & Hayashizaki, Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res. 13, 1324–1334 (2003).
    Article CAS Google Scholar
  50. Kirch, S.A., Rathbun, G.A. & Oettinger, M.A. Dual role of RAG2 in V(D)J recombination: catalysis and regulation of ordered Ig gene assembly. EMBO J. 17, 4881–4886 (1998).
    Article CAS Google Scholar
  51. Gribnau, J. et al. Chromatin interaction mechanism of transcriptional control in vivo . EMBO J. 17, 6020–6027 (1998).
    Article CAS Google Scholar
  52. Chakalova, L., Carter, D. & Fraser, P. RNA fluorescence in situ hybridization tagging and recovery of associated proteins to analyze in vivo chromatin interactions. Methods Enzymol. 375, 479–493 (2004).
    Article CAS Google Scholar

Download references