Lifespan and mitochondrial control of neurodegeneration (original) (raw)

References

  1. Mattson, M.P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129 (2000).
    Article CAS Google Scholar
  2. Nijhawan, D., Honarpour, N. & Wang, X. Apoptosis in neural development and disease. Annu. Rev. Neurosci. 23, 73–87 (2000).
    Article CAS Google Scholar
  3. Reme, C.E., Grimm, C., Hafezi, F., Marti, A. & Wenzel, A. Apoptotic cell death in retinal degenerations. Prog. Retin. Eye Res. 17, 443–464 (1998).
    Article CAS Google Scholar
  4. Abraham, M.C. & Shaham, S. Death without caspases, caspases without death. Trends Cell Biol. 14, 184–193 (2004).
    Article CAS Google Scholar
  5. Clarke, G. et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 406, 195–199 (2000).
    Article CAS Google Scholar
  6. Clarke, G., Lumsden, C.J. & McInnes, R.R. Inherited neurodegenerative diseases: the one-hit model of neurodegeneration. Hum. Mol. Genet. 10, 2269–2275 (2001).
    Article CAS Google Scholar
  7. Daiger, S.P. Identifying retinal disease genes: how far have we come, how far do we have to go? Novartis Found. Symp. 255, 17–27 (2004).
    CAS PubMed PubMed Central Google Scholar
  8. Rattner, A., Sun, H. & Nathans, J. Molecular genetics of human retinal disease. Annu. Rev. Genet. 33, 89–131 (1999).
    Article CAS Google Scholar
  9. Pacione, L.R., Szego, M.J., Ikeda, S., Nishina, P.M. & McInnes, R.R. Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu. Rev. Neurosci. 26, 657–700 (2003).
    Article CAS Google Scholar
  10. Wolf, B.B. & Green, D.R. Apoptosis: letting slip the dogs of war. Curr. Biol. 12, R177–R179 (2002).
    Article CAS Google Scholar
  11. Newmeyer, D.D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490 (2003).
    Article CAS Google Scholar
  12. Danial, N.N. & Korsmeyer, S.J. Cell death: critical control points. Cell 116, 205–219 (2004).
    Article CAS Google Scholar
  13. LaVail, M.M. et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest. Ophthalmol. Vis. Sci. 39, 592–602 (1998).
    CAS PubMed Google Scholar
  14. Hafezi, F., Grimm, C., Simmen, B.C., Wenzel, A. & Reme, C.E. Molecular ophthalmology: an update on animal models for retinal degenerations and dystrophies. Br. J. Ophthalmol. 84, 922–927 (2000).
    Article CAS Google Scholar
  15. Yu, L., Lenardo, M.J. & Baehrecke, E.H. Autophagy and caspases: a new cell death program. Cell Cycle 3, 1124–1126 (2004).
    CAS PubMed Google Scholar
  16. Halliwell, B. & Gutteridge, J.M.C. Free Radicals in Biology and Medicine 3rd edn. (Oxford University Press, Oxford, 1999).
    Google Scholar
  17. Beckman, K.B. & Ames, B.N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).
    Article CAS Google Scholar
  18. Perez-Campo, R., Lopez-Torres, M., Cadenas, S., Rojas, C. & Barja, G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J. Comp. Neurol. B 168, 149–158 (1998).
    CAS Google Scholar
  19. Gal, A., Apfelstedt-Sylla, E., Janecke, A.R. & Zrenner, E. Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Prog. Retinal Eye Res. 16, 51–79 (1997).
    Article CAS Google Scholar
  20. Cideciyan, A.V. et al. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc. Natl. Acad. Sci. USA 95, 7103–7108 (1998).
    Article CAS Google Scholar
  21. Schmidt-Nielsen, K. Scaling: Why Is Animal Size So Important? (Cambridge University Press, Cambridge, 1984).
    Book Google Scholar
  22. Sohal, R.S., Sevensson, I., Sohal, B.H. & Brunk, U.T. Superoxide anion radical production in different animal species. Mech. Ageing Dev. 49, 129–135 (1989).
    Article CAS Google Scholar
  23. Sohal, R.S., Svensson, I. & Brunk, U.T. Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev. 53, 209–215 (1990).
    Article CAS Google Scholar
  24. Ku, H.-H., Brunk, U.T. & Sohal, R.S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 15, 621–627 (1993).
    Article CAS Google Scholar
  25. Barja, G. Mitochondrial free radical production and aging in mammals and birds. Ann. NY Acad. Sci. 854, 224–238 (1998).
    Article CAS Google Scholar
  26. Ku, H.-H. & Sohal, R.S. Comparison of mitochondrial pro-oxidant generation and antioxidant defences between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech. Aging Dev. 72, 67–76 (1993).
    Article CAS Google Scholar
  27. Dunnett, S.B. & Bjorklund, A. Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature 399 (Suppl), A32–A39 (1999).
    Article CAS Google Scholar
  28. Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G.P. & Davies, S.W. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 97, 8093–8097 (2000).
    Article CAS Google Scholar
  29. Hulbert, A.J. & Else, P.L. Mechanisms underlying the cost of living in animals. Annu. Rev. Physiol. 62, 207–235 (2000).
    Article CAS Google Scholar
  30. Pamplona, R., Barja, G. & Portero-Otin, M. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. Ann. NY Acad. Sci. 959, 476–490 (2002).
    Article Google Scholar
  31. Hulbert, A.J. & Else, P.L. Membranes as possible pacemakers of metabolism. J. Theor. Biol. 199, 257–274 (1999).
    Article CAS Google Scholar
  32. Turner, N., Else, P.L. & Hulbert, A.J. Docosahexaenoic acid (DHA) content of membranes determines molecular acivity of the sodium pump: implications for disease states and metabolism. Naturwissenschaften 90, 521–523 (2003).
    Article CAS Google Scholar
  33. Porter, R.K., Hulbert, A.J. & Brand, M.D. Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am. J. Physiol. 271, R1550–R1560 (1996).
    CAS PubMed Google Scholar
  34. Partridge, L. Evolutionary biology and age-related mortality. in Between Zeus and the Salmon (eds. Wachter, K.W. & Finch, C.E.) 78–95 (National Academy Press, Washington, DC, 1997).
    Google Scholar
  35. Sampayo, J.N., Gill, M.S. & Lithgow, G.J. Oxidative stress and aging—the use of superoxide dismutase/catalase mimetics to extend lifespan. Biochem. Soc. Trans. 31, 1305–1307 (2003).
    Article CAS Google Scholar
  36. Antebi, A. Tipping the balance toward longevity. Dev. Cell. 6, 315–316 (2004).
    Article CAS Google Scholar
  37. Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. USA 101, 10042–10047 (2004).
    Article CAS Google Scholar
  38. Andersen, J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10 (Suppl), S18–S25 (2004).
    Article Google Scholar
  39. Boehning, D. et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell Biol. 5, 1051–1061 (2003).
    Article CAS Google Scholar
  40. St-Pierre, J., Buckingham, J.A., Roebuck, S.J. & Brand, M.D. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277, 44784–44790 (2002).
    Article CAS Google Scholar
  41. Shiva, S. et al. Redox signalling: from nitric oxide to oxidised lipids. in Free Radicals: Enzymology, Signalling and Disease (eds. Cooper, C.E., Wilson, M.T. & Darley-Usmar, V.M.) 107–120 (Portland, London, 2004).
    Google Scholar
  42. Kamata, H. & Hirata, H. Redox regulation of cellular signalling. Cell. Signal. 11, 1–14 (1998).
    Article Google Scholar
  43. Echtay, K.S. et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 22, 4103–4110 (2003).
    Article CAS Google Scholar
  44. Adams, J.M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).
    Article CAS Google Scholar
  45. Ott, M., Robertson, J.D., Gogvadze, V., Zhivotovsky, B. & Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. USA 99, 1259–1263 (2002).
    Article CAS Google Scholar
  46. Jauslin, M.L., Meier, T., Smith, R.A. & Murphy, M.P. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. 17, 1972–1974 (2003).
    Article CAS Google Scholar
  47. Echtay, K.S., Murphy, M.P., Smith, R.A., Talbot, D.A. & Brand, M.D. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J. Biol. Chem. 277, 47129–47135 (2002).
    Article CAS Google Scholar
  48. Olshansky, S.J., Carnes, B.A. & Cassel, C. In search of Methuselah: estimating the upper limits to human longevity. Science 250, 634–640 (1990).
    Article CAS Google Scholar
  49. Altman, P.L. & Dittmer, D.S. Biology Data Book 2nd edn. (FASEB, Bethesda, Maryland, 1972).
    Google Scholar
  50. Comfort, A. The Biology of Senescence (Elsevier, New York, 1979).
    Google Scholar

Download references