Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome (original) (raw)
References
Noma, K., Allis, C.D. & Grewal, S.I.S. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science293, 1150–1155 (2001). ArticleCAS Google Scholar
Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science293, 2453–2455 (2001). ArticleCAS Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). ArticleCAS Google Scholar
Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I.S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). ArticleCAS Google Scholar
Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCAS Google Scholar
Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). ArticleCAS Google Scholar
Lachner, M., O'Sullivan, R.J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci.116, 2117–2124 (2003). ArticleCAS Google Scholar
Grewal, S.I. & Rice, J.C. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol.16, 230–238 (2004). ArticleCAS Google Scholar
Mochizuki, K. & Gorovsky, M.A. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev.14, 181–187 (2004). ArticleCAS Google Scholar
Chan, S.W., Henderson, I.R. & Jacobsen, S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet.6, 351–360 (2005). ArticleCAS Google Scholar
Matzke, M.A. & Birchler, J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet.6, 24–35 (2005). ArticleCAS Google Scholar
Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ArticleCAS Google Scholar
Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science303, 672–676 (2004). ArticleCAS Google Scholar
Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet.36, 1174–1180 (2004). ArticleCAS Google Scholar
Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell119, 789–802 (2004). ArticleCAS Google Scholar
Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I.S. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. USA102, 152–157 (2005). ArticleCAS Google Scholar
Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature430, 471–476 (2004). ArticleCAS Google Scholar
Martens, J.H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24, 800–812 (2005). ArticleCAS Google Scholar
Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature415, 871–880 (2002). ArticleCAS Google Scholar
Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J.23, 3825–3835 (2004). ArticleCAS Google Scholar
Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science301, 1069–1074 (2003). ArticleCAS Google Scholar
Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001). ArticleCAS Google Scholar
Jia, S., Yamada, T. & Grewal, S.I.S. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell119, 469–480 (2004). ArticleCAS Google Scholar
Partridge, J.F., Borgstrom, B. & Allshire, R.C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev.14, 783–791 (2000). CASPubMedPubMed Central Google Scholar
Takahashi, K., Chen, E.S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science288, 2215–2219 (2000). ArticleCAS Google Scholar
Henikoff, S., Ahmad, K., Platero, J.S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA97, 716–721 (2000). ArticleCAS Google Scholar
Mandell, J.G., Bahler, J., Volpe, T.A., Martienssen, R.A. & Cech, T.R. Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biol.6, R1 (2005). Article Google Scholar
Thon, G. & Verhein-Hansen, J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics155, 551–568 (2000). CASPubMedPubMed Central Google Scholar
Shankaranarayana, G.D., Motamedi, M.R., Moazed, D. & Grewal, S.I.S. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol.13, 1240–1246 (2003). ArticleCAS Google Scholar
Hansen, K.R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol.25, 590–601 (2005). ArticleCAS Google Scholar
Bowen, N.J., Jordan, I.K., Epstein, J.A., Wood, V. & Levin, H.L. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res.13, 1984–1997 (2003). ArticleCAS Google Scholar
Sullivan, B.A. & Karpen, G.H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol.11, 1076–1083 (2004). ArticleCAS Google Scholar
Petrie, V.J., Wuitschick, J.D., Givens, C.D., Kosinski, A.M. & Partridge, J.F. RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast. Mol. Cell. Biol.25, 2331–2346 (2005). ArticleCAS Google Scholar
Llave, C., Kasschau, K.D., Rector, M.A. & Carrington, J.C. Endogenous and silencing-associated small RNAs in plants. Plant Cell14, 1605–1619 (2002). ArticleCAS Google Scholar
Aravin, A.A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). ArticleCAS Google Scholar
Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). ArticleCAS Google Scholar
Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P.D. A protein sensor for siRNA asymmetry. Science306, 1377–1380 (2004). ArticleCAS Google Scholar
Reinhart, B.J. & Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science297, 1831 (2002). ArticleCAS Google Scholar
Jia, S., Noma, K. & Grewal, S.I.S. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science304, 1971–1976 (2004). ArticleCAS Google Scholar
Kanoh, J. & Ishikawa, F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr. Biol.11, 1624–1630 (2001). ArticleCAS Google Scholar
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, E104 (2004). Article Google Scholar
Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature426, 310–314 (2003). ArticleCAS Google Scholar
Hall, I.M., Noma, K. & Grewal, S.I.S. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA100, 193–198 (2003). ArticleCAS Google Scholar
Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet.30, 329–334 (2002). Article Google Scholar
Herr, A.J., Jensen, M.B., Dalmay, T. & Baulcombe, D.C. RNA polymerase IV directs silencing of endogenous DNA. Science308, 118–120 (2005). ArticleCAS Google Scholar
Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell120, 613–622 (2005). ArticleCAS Google Scholar
Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat. Genet., advance online publication 29 May 2005 (10.1038/ng1580).
Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev.15, 188–200 (2001). ArticleCAS Google Scholar