Second-generation shRNA libraries covering the mouse and human genomes (original) (raw)
Nakayashiki, H. et al. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet. Biol.42, 275–283 (2005). ArticleCAS Google Scholar
Tang, G. & Galili, G. Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol.22, 463–469 (2004). ArticleCAS Google Scholar
Dasgupta, R. & Perrimon, N. Using RNAi to catch Drosophila genes in a web of interactions: insights into cancer research. Oncogene23, 8359–8365 (2004). ArticleCAS Google Scholar
Fraser, A. Towards full employment: using RNAi to find roles for the redundant. Oncogene23, 8346–8352 (2004). ArticleCAS Google Scholar
Silva, J., Chang, K., Hannon, G.J. & Rivas, F.V. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene23, 8401–8409 (2004). ArticleCAS Google Scholar
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCAS Google Scholar
He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5, 522–531 (2004). ArticleCAS Google Scholar
Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). ArticleCAS Google Scholar
Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). ArticleCAS Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). ArticleCAS Google Scholar
Knight, S.W. & Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science293, 2269–2271 (2001). ArticleCAS Google Scholar
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). ArticleCAS Google Scholar
Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.23, 4051–4060 (2004). ArticleCAS Google Scholar
Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCAS Google Scholar
Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235 (2004). ArticleCAS Google Scholar
Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol.14, 2162–2167 (2004). ArticleCAS Google Scholar
Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev.18, 3016–3027 (2004). ArticleCAS Google Scholar
Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). ArticleCAS Google Scholar
Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). ArticleCAS Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). ArticleCAS Google Scholar
Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol.23, 227–231 (2005). ArticleCAS Google Scholar
Song, J.J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol.10, 1026–1032 (2003). ArticleCAS Google Scholar
Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). ArticleCAS Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). ArticleCAS Google Scholar
Paddison, P.J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature428, 427–431 (2004). ArticleCAS Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCAS Google Scholar
Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell9, 1327–1333 (2002). ArticleCAS Google Scholar
Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev.16, 948–958 (2002). ArticleCAS Google Scholar
Westbrook, T.F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell121, 837–848 (2005). ArticleCAS Google Scholar
Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA9, 112–123 (2003). ArticleCAS Google Scholar
Kawasaki, H. & Taira, K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res.31, 700–707 (2003). ArticleCAS Google Scholar
Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCAS Google Scholar
Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA101, 135–140 (2004). ArticleCAS Google Scholar
Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet., advance online publication XX XXX 2005 (10.1038/ngXXX). [date and doi for lowe]
Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single copy Pol II regulated RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA102, 13212–13217 (2005). ArticleCAS Google Scholar
Li, M.Z. & Elledge, S.J. MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat. Genet.37, 311–319 (2005). ArticleCAS Google Scholar
Cleary, M.A. et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat. Methods1, 241–248 (2004). ArticleCAS Google Scholar
Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem.273, 34970–34975 (1998). ArticleCAS Google Scholar
Carmell, M.A. & Hannon, G.J. RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol.11, 214–218 (2004). ArticleCAS Google Scholar
Elledge, S.J. & Walker, G.C. Phasmid vectors for identification of genes by complementation of Escherichia coli mutants. J. Bacteriol.162, 777–783 (1985). CASPubMedPubMed Central Google Scholar
Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA97, 6640–6645 (2000). ArticleCAS Google Scholar
Cherepanov, P.P. & Wackernagel, W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene158, 9–14 (1995). ArticleCAS Google Scholar
Chalker, A.F., Leach, D.R. & Lloyd, R.G. Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome. Gene71, 201–205 (1988). ArticleCAS Google Scholar
Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.16, 2491–2496 (2002). ArticleCAS Google Scholar