Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCAS Google Scholar
Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell123, 1133–1146 (2005). ArticleCAS Google Scholar
Farh, K.K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science310, 1817–1821 (2005). ArticleCAS Google Scholar
Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell16, 861–865 (2004). ArticleCAS Google Scholar
Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004). ArticleCAS Google Scholar
Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.23, 4051–4060 (2004). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCAS Google Scholar
Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature432, 231–235 (2004). ArticleCAS Google Scholar
Gregory, R.I. et al. The microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). ArticleCAS Google Scholar
Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). ArticleCAS Google Scholar
Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). ArticleCAS Google Scholar
Zeng, Y. & Cullen, B.R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res.32, 4776–4785 (2004). ArticleCAS Google Scholar
Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744 (2005). ArticleCAS Google Scholar
Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). Article Google Scholar
Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–295 (2000). ArticleCAS Google Scholar
Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev.19, 2979–2990 (2005). ArticleCAS Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). ArticleCAS Google Scholar
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197 (2004). ArticleCAS Google Scholar
Schwarz, D.S., Hutvágner, G., Haley, B. & Zamore, P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell10, 537–548 (2002). ArticleCAS Google Scholar
Zeng, Y., Yi, R. & Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA100, 9779–9784 (2003). ArticleCAS Google Scholar
Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). ArticleCAS Google Scholar
Hutvágner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060 (2002). Article Google Scholar
Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCAS Google Scholar
Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell9, 1327–1333 (2002). ArticleCAS Google Scholar
Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev.17, 438–442 (2003). ArticleCAS Google Scholar
Zeng, Y. & Cullen, B.R. Sequence requirements for microRNA processing and function in human cells. RNA9, 112–123 (2003). ArticleCAS Google Scholar
Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods2, 269–276 (2005). ArticleCAS Google Scholar
Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral micro-RNAs in latently infected cells. Proc. Natl. Acad. Sci. USA102, 5570–5575 (2005). ArticleCAS Google Scholar
Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science304, 734–736 (2004). ArticleCAS Google Scholar
Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol.79, 12095–12099 (2005). ArticleCAS Google Scholar
Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature435, 682–686 (2005). ArticleCAS Google Scholar
Andersson, M.G. et al. Suppression of RNA interference by adenovirus virus-associated RNA. J. Virol.79, 9556–9565 (2005). ArticleCAS Google Scholar
Sano, M., Kato, Y. & Taira, K. Sequence-specific interference by small RNAs derived from adenovirus VA1 RNA. FEBS Lett.580, 1553–1564 (2006). ArticleCAS Google Scholar
Cai, X. et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog.2, e23 (2006). Article Google Scholar
Grundhoff, A., Sullivan, C.S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA12, 1–18 (2006). Article Google Scholar
Mathews, M.B. & Shenk, T. Adenovirus virus-associated RNA and translation control. J. Virol.65, 5657–5662 (1991). CASPubMedPubMed Central Google Scholar
Thimmappaya, B., Weinberger, C., Schneider, R.J. & Shenk, T. Adenovirus VA1 RNA is required for efficient translation of viral mRNAs at late times after infection. Cell31, 543–551 (1982). ArticleCAS Google Scholar
Gwizdek, C. et al. Terminal minihelix, a novel RNA motif that directs polymerase III transcripts to the cell cytoplasm. J. Biol. Chem.276, 25910–25918 (2001). ArticleCAS Google Scholar
Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004). ArticleCAS Google Scholar
Lu, S. & Cullen, B.R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol.78, 12868–12876 (2004). ArticleCAS Google Scholar
Aparicio, O., Razquin, N., Zaratiegui, M., Narvaiza, I. & Fortes, P. Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J. Virol.80, 1376–1384 (2006). ArticleCAS Google Scholar
Fraser, N.W., Block, T.M. & Spivack, J.G. The latency-associated transcripts of herpes simplex virus: RNA in search of function. Virology191, 1–8 (1992). ArticleCAS Google Scholar
Branco, F.J. & Fraser, N.W. Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J. Virol.79, 9019–9025 (2005). ArticleCAS Google Scholar
Cai, X. & Cullen, B.R. Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J. Virol.80, 2234–2242 (2006). ArticleCAS Google Scholar
Samols, M.A., Hu, J., Skalsky, R.L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol.79, 9301–9305 (2005). ArticleCAS Google Scholar
Furnari, F.B., Adams, M.D. & Pagano, J.S. Unconventional processing of the 3′ termini of the Epstein-Barr virus DNA polymerase mRNA. Proc. Natl. Acad. Sci. USA90, 378–382 (1993). ArticleCAS Google Scholar
Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. & Ploegh, H.L. Viral subversion of the immune system. Annu. Rev. Immunol.18, 861–926 (2000). ArticleCAS Google Scholar
Katze, M.G., He, Y. & Gale, M.G. Jr. Viruses and interferon: A fight for supremacy. Nat. Rev. Immunol.2, 675–687 (2002). ArticleCAS Google Scholar
Macrae, A.I. et al. Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus important for acute pathogenesis. J. Virol.75, 5315–5327 (2001). ArticleCAS Google Scholar
Gitlin, L. & Andino, R. Nucleic acid-based immune system: The antiviral potential of mammalian RNA silencing. J. Virol.77, 7159–7165 (2003). ArticleCAS Google Scholar
Lecellier, C.-H. et al. A cellular microRNA mediates antiviral defense in human cells. Science308, 557–560 (2005). ArticleCAS Google Scholar
Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science309, 1577–1581 (2005). ArticleCAS Google Scholar
Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). Article Google Scholar