Viruses and microRNAs (original) (raw)

References

  1. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
    Article CAS Google Scholar
  2. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).
    Article CAS Google Scholar
  3. Farh, K.K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).
    Article CAS Google Scholar
  4. Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 (2004).
    Article CAS Google Scholar
  5. Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).
    Article CAS Google Scholar
  6. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).
    Article CAS Google Scholar
  7. Lee, Y. et al. The nuclear RNase III drosha initiates microRNA processing. Nature 425, 415–419 (2003).
    Article CAS Google Scholar
  8. Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature 432, 231–235 (2004).
    Article CAS Google Scholar
  9. Gregory, R.I. et al. The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).
    Article CAS Google Scholar
  10. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).
    Article CAS Google Scholar
  11. Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).
    Article CAS Google Scholar
  12. Zeng, Y. & Cullen, B.R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32, 4776–4785 (2004).
    Article CAS Google Scholar
  13. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).
    Article CAS Google Scholar
  14. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
    Article Google Scholar
  15. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–295 (2000).
    Article CAS Google Scholar
  16. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).
    Article CAS Google Scholar
  17. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).
    Article CAS Google Scholar
  18. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).
    Article CAS Google Scholar
  19. Schwarz, D.S., Hutvágner, G., Haley, B. & Zamore, P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548 (2002).
    Article CAS Google Scholar
  20. Zeng, Y., Yi, R. & Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784 (2003).
    Article CAS Google Scholar
  21. Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).
    Article CAS Google Scholar
  22. Hutvágner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).
    Article Google Scholar
  23. Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).
    Article CAS Google Scholar
  24. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).
    Article CAS Google Scholar
  25. Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).
    Article CAS Google Scholar
  26. Zeng, Y. & Cullen, B.R. Sequence requirements for microRNA processing and function in human cells. RNA 9, 112–123 (2003).
    Article CAS Google Scholar
  27. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).
    Article CAS Google Scholar
  28. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral micro-RNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102, 5570–5575 (2005).
    Article CAS Google Scholar
  29. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).
    Article CAS Google Scholar
  30. Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005).
    Article CAS Google Scholar
  31. Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005).
    Article CAS Google Scholar
  32. Andersson, M.G. et al. Suppression of RNA interference by adenovirus virus-associated RNA. J. Virol. 79, 9556–9565 (2005).
    Article CAS Google Scholar
  33. Sano, M., Kato, Y. & Taira, K. Sequence-specific interference by small RNAs derived from adenovirus VA1 RNA. FEBS Lett. 580, 1553–1564 (2006).
    Article CAS Google Scholar
  34. Cai, X. et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23 (2006).
    Article Google Scholar
  35. Grundhoff, A., Sullivan, C.S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12, 1–18 (2006).
    Article Google Scholar
  36. Mathews, M.B. & Shenk, T. Adenovirus virus-associated RNA and translation control. J. Virol. 65, 5657–5662 (1991).
    CAS PubMed PubMed Central Google Scholar
  37. Thimmappaya, B., Weinberger, C., Schneider, R.J. & Shenk, T. Adenovirus VA1 RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31, 543–551 (1982).
    Article CAS Google Scholar
  38. Gwizdek, C. et al. Terminal minihelix, a novel RNA motif that directs polymerase III transcripts to the cell cytoplasm. J. Biol. Chem. 276, 25910–25918 (2001).
    Article CAS Google Scholar
  39. Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).
    Article CAS Google Scholar
  40. Lu, S. & Cullen, B.R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 12868–12876 (2004).
    Article CAS Google Scholar
  41. Aparicio, O., Razquin, N., Zaratiegui, M., Narvaiza, I. & Fortes, P. Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J. Virol. 80, 1376–1384 (2006).
    Article CAS Google Scholar
  42. Fraser, N.W., Block, T.M. & Spivack, J.G. The latency-associated transcripts of herpes simplex virus: RNA in search of function. Virology 191, 1–8 (1992).
    Article CAS Google Scholar
  43. Branco, F.J. & Fraser, N.W. Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J. Virol. 79, 9019–9025 (2005).
    Article CAS Google Scholar
  44. Cai, X. & Cullen, B.R. Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J. Virol. 80, 2234–2242 (2006).
    Article CAS Google Scholar
  45. Samols, M.A., Hu, J., Skalsky, R.L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305 (2005).
    Article CAS Google Scholar
  46. Furnari, F.B., Adams, M.D. & Pagano, J.S. Unconventional processing of the 3′ termini of the Epstein-Barr virus DNA polymerase mRNA. Proc. Natl. Acad. Sci. USA 90, 378–382 (1993).
    Article CAS Google Scholar
  47. Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J. & Ploegh, H.L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).
    Article CAS Google Scholar
  48. Katze, M.G., He, Y. & Gale, M.G. Jr. Viruses and interferon: A fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).
    Article CAS Google Scholar
  49. Macrae, A.I. et al. Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus important for acute pathogenesis. J. Virol. 75, 5315–5327 (2001).
    Article CAS Google Scholar
  50. Gitlin, L. & Andino, R. Nucleic acid-based immune system: The antiviral potential of mammalian RNA silencing. J. Virol. 77, 7159–7165 (2003).
    Article CAS Google Scholar
  51. Lecellier, C.-H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).
    Article CAS Google Scholar
  52. Linial, M.L. Foamy viruses are unconventional retroviruses. J. Virol. 73, 1747–1755 (1999).
    CAS PubMed PubMed Central Google Scholar
  53. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).
    Article CAS Google Scholar
  54. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).
    Article Google Scholar

Download references