Levy, D. E. & Garcia-Sastre, A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev.12, 143–156 (2001). ArticleCASPubMed Google Scholar
Grander, D., Sangfelt, O. & Erickson, S. How does interferon exert its cell growth inhibitory effect? Eur. J. Haematol.59, 129–135 (1997). ArticleCASPubMed Google Scholar
Biron, C. A. Interferons-α and -β as immune regulators — a new look. Immunity14, 661–664 (2001). ArticleCASPubMed Google Scholar
Doly, J., Civas, A., Navarro, S. & Uze, G. Type I interferons: expression and signalization. Cell. Mol. Life Sci.54, 1109–1121 (1998). ArticleCASPubMed Google Scholar
Hwang, S. Y. et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons-α and -β and alters macrophage responses. Proc. Natl Acad. Sci. USA92, 11284–11288 (1995).Mice with a null mutation in theIfnar1gene were generated and it was shown that the type I IFN system is an important acute antiviral defence. ArticleCASPubMedPubMed Central Google Scholar
Kamijo, R. et al. Biological functions of IFN-γ and IFN-α/β: lessons from studies in gene knockout mice. Hokkaido Igaku Zasshi.69, 1332–1338 (1994). CASPubMed Google Scholar
Barnes, B., Lubyova, B. & Pitha, P. M. Review: on the role of IRF in host defense. J. Interferon Cytokine Res.22, 59–71 (2002). ArticleCASPubMed Google Scholar
Barnes, B. J., Moore, P. A. & Pitha, P. M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon-α genes. J. Biol. Chem.276, 23382–23390 (2001). ArticleCASPubMed Google Scholar
Juang, Y. et al. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc. Natl Acad. Sci. USA95, 9837–9842 (1998).This study identified IRF3 and CBP/p300 as integral components of the virus-induced complex that stimulates type I IFN gene transcription, and indicated a new mechanism by which adenovirus might overcome the antiviral effects of the IFN pathway. ArticleCASPubMedPubMed Central Google Scholar
Levy, D. E., Marie, I., Smith, E. & Prakash, A. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J. Interferon Cytokine Res.22, 87–93 (2002). ArticleCASPubMed Google Scholar
Yeow, W. S. et al. Reconstitution of virus-mediated expression of interferon-α genes in human fibroblast cells by ectopic interferon regulatory factor-7. J. Biol. Chem.275, 6313–6320 (2000). ArticleCASPubMed Google Scholar
Biron, C. A. & Sen, G. C. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 321–352 (Lippincott, Williams & Wilkins, Philadelphia, 2001). Google Scholar
de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukocyte Biol.69, 912–920 (2001). CASPubMed Google Scholar
Der, S. D., Zhou, A., Williams, B. R. & Silverman, R. H. Identification of genes differentially regulated by interferon-α, -β or -γ using oligonucleotide arrays. Proc. Natl Acad. Sci. USA95, 15623–15628 (1998).Using microarray-based mRNA profiling of IFN-treated human cells, this study showed the usefulness of oligonucleotide arrays for monitoring mammalian gene expression and provided new insights into the basic mechanisms of IFN actions. ArticleCASPubMedPubMed Central Google Scholar
Meurs, E. et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell62, 379–390 (1990). ArticleCASPubMed Google Scholar
Gale, M. Jr & Katze, M. G. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol. Ther.78, 29–46 (1998). ArticleCASPubMed Google Scholar
Ghosh, S. K. et al. Cloning, sequencing and expression of two murine 2′-5′-oligoadenylate synthetases. Structure–function relationships. J. Biol. Chem.266, 15293–15299 (1991). CASPubMed Google Scholar
Zhou, A., Hassel, B. A. & Silverman, R. H. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell72, 753–765 (1993). ArticleCASPubMed Google Scholar
Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J.16, 6355–6363 (1997). ArticleCASPubMedPubMed Central Google Scholar
Staeheli, P. & Haller, O. Interferon-induced Mx protein: a mediator of cellular resistance to influenza virus. Interferon8, 1–23 (1987). CASPubMed Google Scholar
Kochs, G., Janzen, C., Hohenberg, H. & Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl Acad. Sci. USA99, 3153–3158 (2002). ArticleCASPubMedPubMed Central Google Scholar
Patterson, J. B., Thomis, D. C., Hans, S. L. & Samuel, C. E. Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by α- and γ-interferons. Virology210, 508–511 (1995). ArticleCASPubMed Google Scholar
Biron, C. A. Role of early cytokines, including α- and β-interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Semin. Immunol.10, 383–390 (1998). ArticleCASPubMed Google Scholar
Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol.19, 65–91 (2001). ArticleCASPubMed Google Scholar
Taniguchi, T. & Takaoka, A. The interferon-α/β system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol.14, 111–116 (2002). ArticleCASPubMed Google Scholar
Nguyen, H., Hiscott, J. & Pitha, P. M. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev.8, 293–312 (1997). ArticleCASPubMed Google Scholar
Zimring, J. C., Goodbourn, S. & Offermann, M. K. Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription. J. Virol.72, 701–707 (1998). CASPubMedPubMed Central Google Scholar
Cebulla, C. M., Miller, D. M. & Sedmak, D. D. Viral inhibition of interferon signal transduction. Intervirology42, 325–330 (1999). ArticleCASPubMed Google Scholar
Goodbourn, S., Didcock, L. & Randall, R. E. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol.81, 2341–2364 (2000). ArticleCASPubMed Google Scholar
Garcia-Sastre, A. Mechanisms of inhibition of the host interferon-α/β-mediated antiviral responses by viruses. Microbes Infect.4, 647–655 (2002). ArticleCASPubMed Google Scholar
Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B147, 258–267 (1957). ArticleCASPubMed Google Scholar
Haller, O., Frese, M. & Kochs, G. Mx proteins: mediators of innate resistance to RNA viruses. Rev. Sci. Tech.17, 220–230 (1998). ArticleCASPubMed Google Scholar
Garcia-Sastre, A. et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology252, 324–330 (1998). ArticleCASPubMed Google Scholar
Garcia-Sastre, A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology279, 375–384 (2001). ArticleCASPubMed Google Scholar
Lee, T. G., Tang, N., Thompson, S., Miller, J. & Katze, M. G. The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the tetratricopeptide-repeat family of proteins. Mol. Cell. Biol.14, 2331–2342 (1994). ArticleCASPubMedPubMed Central Google Scholar
Gale, M. Jr et al. Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK. Mol. Cell. Biol.18, 859–871 (1998). ArticleCASPubMedPubMed Central Google Scholar
Melville, M. W. et al. The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat-shock protein 70 activity. J. Biol. Chem.274, 3797–3803 (1999). ArticleCASPubMed Google Scholar
Polyak, S. J., Tang, N., Wambach, M., Barber, G. N. & Katze, M. G. The P58 cellular inhibitor complexes with the interferon-induced, double-stranded RNA-dependent protein kinase, PKR, to regulate its autophosphorylation and activity. J. Biol. Chem.271, 1702–1707 (1996). ArticleCASPubMed Google Scholar
Wang, X. Z. et al. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol.16, 4273–4280 (1996). ArticleCASPubMedPubMed Central Google Scholar
Geiss, G. K. et al. Cellular transcriptional profiling in influenza virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl Acad. Sci. USA99, 10736–10741 (2002).This study examined the effects of NS1 protein expression during influenza A virus infection on global cellular mRNA levels using high-density microarrays. It indicated that the cellular IFN response to influenza A virus infection in lung epithelial cells is influenced markedly by the sequence of theNS1gene, and it characterized a virus that contains the 1918 pandemic influenzaNS1gene. ArticleCASPubMedPubMed Central Google Scholar
Krebs, D. L. & Hilton, D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cells19, 378–387 (2001). ArticleCASPubMed Google Scholar
He, Y. & Katze, M. G. To interfere and to anti-interfere: the interplay between hepatitis C virus and interferon. Viral Immunol.15, 95–119 (2002). ArticleCASPubMed Google Scholar
Tan, S. L. & Katze, M. G. How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A. Virology284, 1–12 (2001). ArticleCASPubMed Google Scholar
Taylor, D. R. Hepatitis C virus and interferon resistance: it's more than just PKR. Hepatology33, 1547–1549 (2001). ArticleCASPubMed Google Scholar
Bartenschlager, R. & Lohmann, V. Novel cell-culture systems for the hepatitis C virus. Antiviral Res.52, 1–17 (2001). ArticleCASPubMed Google Scholar
Gale, M. Jr & Beard, M. R. Molecular clones of hepatitis C virus: applications to animal models. ILAR J.42, 139–151 (2001). ArticlePubMed Google Scholar
Pawlotsky, J. M. Hepatitis C virus resistance to antiviral therapy. Hepatology32, 889–896 (2000). ArticleCASPubMed Google Scholar
Bukh, J., Miller, R. H. & Purcell, R. H. Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin. Liver Dis.15, 41–63 (1995). ArticleCASPubMed Google Scholar
Enomoto, N. et al. Comparison of full-length sequences of interferon-sensitive and -resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino-acid substitutions in the NS5A region. J. Clin. Invest.96, 224–230 (1995). ArticleCASPubMedPubMed Central Google Scholar
Enomoto, N. et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N. Engl. J. Med.334, 77–81 (1996).This study analysed the HCV NS5A ISDR sequences in patients with chronic HCV1b infection before and after IFN therapy, and concluded that there was a substantial correlation between responses to IFN and mutations in theNS5Agene. ArticleCASPubMed Google Scholar
Nakano, I. et al. Why is the interferon sensitivity-determining region (ISDR) system useful in Japan? J. Hepatol.30, 1014–1022 (1999). ArticleCASPubMed Google Scholar
Witherell, G. W. & Beineke, P. Statistical analysis of combined substitutions in nonstructural 5A region of hepatitis C virus and interferon response. J. Med. Virol.63, 8–16 (2001). ArticleCASPubMed Google Scholar
Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science285, 110–113 (1999). ArticleCASPubMed Google Scholar
Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science290, 1972–1974 (2000). ArticleCASPubMed Google Scholar
Frese, M., Pietschmann, T., Moradpour, D., Haller, O. & Bartenschlager, R. Interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J. Gen. Virol.82, 723–733 (2001). ArticleCASPubMed Google Scholar
Sumpter, R. Jr & Gale, M. Jr. in American Society for Virology 21st Annual Meeting W33-3 (Lexington, Kentucky, 2002). Google Scholar
Whitley, R. J. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2461–2509 (Lippincott, Williams & Wilkins, Philadelphia, 2001). Google Scholar
Tan, S. L. & Katze, M. G. HSV.com: maneuvering the internetworks of viral neuropathogenesis and evasion of the host defense. Proc. Natl Acad. Sci. USA97, 5684–5686 (2000). ArticleCASPubMedPubMed Central Google Scholar
Roizman, B. & Knipe, D. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2399–2460 (Lippincott, Williams & Wilkins, Philadelphia, 2001). Google Scholar
Ankel, H., Westra, D. F., Welling-Wester, S. & Lebon, P. Induction of interferon-α by glycoprotein D of herpes simplex virus: a possible role of chemokine receptors. Virology251, 317–326 (1998). ArticleCASPubMed Google Scholar
Kumar-Sinha, C., Varambally, S., Sreekumar, A. & Chinnaiyan, A. M. Molecular cross-talk between the TRAIL and interferon signaling pathways. J. Biol. Chem.277, 575–585 (2002). ArticleCASPubMed Google Scholar
Preston, C. M., Harman, A. N. & Nicholl, M. J. Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J. Virol.75, 8909–8916 (2001). ArticleCASPubMedPubMed Central Google Scholar
Eidson, K. M., Hobbs, W. E., Manning, B. J., Carlson, P. & DeLuca, N. A. Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J. Virol.76, 2180–2191 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mossman, K. L. & Smiley, J. R. Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J. Virol.76, 1995–1998 (2002). ArticleCASPubMedPubMed Central Google Scholar
Harle, P., Sainz, B. Jr, Carr, D. J. & Halford, W. P. The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon-α/β. Virology293, 295–304 (2002). ArticlePubMedCAS Google Scholar
He, B., Gross, M. & Roizman, B. The γ(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α-subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl Acad. Sci. USA94, 843–848 (1997).This study indicated a unique mechanism by which HSV γ(1)34.5 interacts with and redirects protein phosphatase 1α to dephosphorylate eIF-2α to allow continued protein synthesis despite the presence of activated PKR. ArticleCASPubMedPubMed Central Google Scholar
Cassady, K. A. & Gross, M. The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J. Virol.76, 2029–2035 (2002). ArticleCASPubMedPubMed Central Google Scholar
Leib, D. A., Machalek, M. A., Williams, B. R., Silverman, R. H. & Virgin, H. W. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl Acad. Sci. USA97, 6097–6101 (2000).Using recombinant viruses to infect animals that have null mutations in host-defence genes, this study showed that a virus that was attenuated by deletion ofICP34.5showed wild-type replication and virulence in a host from which thePKRgene had been deleted, exemplifying a formal genetic test for identifyingin vivomechanisms and targets of microbial virulence genes. ArticleCASPubMedPubMed Central Google Scholar
Poppers, J., Mulvey, M., Khoo, D. & Mohr, I. Inhibition of PKR activation by the proline-rich RNA-binding domain of the herpes simplex virus type 1 US11 protein. J. Virol.74, 11215–11221 (2000). ArticleCASPubMedPubMed Central Google Scholar
Esposito, J. J. & Fenner, F. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2849–2884 (Lippincott, Williams & Wilkins, Philadelphia, 2001). Google Scholar
Moss, B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2885–2922 (Lippincott, Williams & Wilkins, Philadelphia, 2001). Google Scholar
Cohen, J. Bioterrorism. Smallpox vaccinations: how much protection remains? Science294, 985 (2001). ArticleCASPubMed Google Scholar
Smith, G. L. & McFadden, G. Smallpox: anything to declare? Nature Rev. Immunol.2, 521–527 (2002). ArticleCAS Google Scholar
Alcami, A. & Smith, G. L. Receptors for γ-interferon encoded by poxviruses: implications for the unknown origin of vaccinia virus. Trends Microbiol.4, 321–326 (1996). ArticleCASPubMed Google Scholar
Alcami, A. & Smith, G. L. Soluble interferon-α receptors encoded by poxviruses. Comp. Immunol. Microbiol. Infect. Dis.19, 305–317 (1996). ArticleCASPubMed Google Scholar
McFadden, G. & Murphy, P. M. Host-related immunomodulators encoded by poxviruses and herpesviruses. Curr. Opin. Microbiol.3, 371–378 (2000). ArticleCASPubMed Google Scholar
Lalani, A. S. et al. Use of chemokine receptors by poxviruses. Science286, 1968–1971 (1999). ArticleCASPubMed Google Scholar
Alcami, A. & Smith, G. L. Vaccinia, cowpox and camelpox viruses encode soluble γ-interferon receptors with novel broad species specificity. J. Virol.69, 4633–4639 (1995). CASPubMedPubMed Central Google Scholar
Alcami, A. & Smith, G. L. Cytokine receptors encoded by poxviruses: a lesson in cytokine biology. Immunol. Today16, 474–478 (1995). ArticleCASPubMed Google Scholar
McFadden, G., Lalani, A., Everett, H., Nash, P. & Xu, X. Virus-encoded receptors for cytokines and chemokines. Semin. Cell Dev. Biol.9, 359–368 (1998). ArticleCASPubMed Google Scholar
Colamonici, O. R., Domanski, P., Sweitzer, S. M., Larner, A. & Buller, R. M. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon-α transmembrane signaling. J. Biol. Chem.270, 15974–15978 (1995). ArticleCASPubMed Google Scholar
Symons, J. A., Alcami, A. & Smith, G. L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell81, 551–560 (1995).This study characterized the vaccinia-virus soluble type I IFN receptor encoded by theB18Rgene, which has broad species specificity and might have aided vaccinia-virus replication in many host species during evolution. ArticleCASPubMed Google Scholar
Verardi, P. H., Jones, L. A., Aziz, F. H., Ahmad, S. & Yilma, T. D. Vaccinia virus vectors with an inactivated γ-interferon receptor homolog gene (B8R) are attenuated in vivo without a concomitant reduction in immunogenicity. J. Virol.75, 11–18 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sroller, V., Ludvikova, V., Maresova, L., Hainz, P. & Nemeckova, S. Effect of IFN-γ receptor gene deletion on vaccinia-virus virulence. Arch. Virol.146, 239–249 (2001). ArticleCASPubMed Google Scholar
Akkaraju, G. R., Whitaker-Dowling, P., Youngner, J. S. & Jagus, R. Vaccinia-specific kinase inhibitory factor prevents translational inhibition by double-stranded RNA in rabbit reticulocyte lysate. J. Biol. Chem.264, 10321–10325 (1989). CASPubMed Google Scholar
Watson, J. C., Chang, H. W. & Jacobs, B. L. Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology185, 206–216 (1991). ArticleCASPubMed Google Scholar
Chang, H. W., Watson, J. C. & Jacobs, B. L. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl Acad. Sci. USA89, 4825–4829 (1992). ArticleCASPubMedPubMed Central Google Scholar
Beattie, E., Paoletti, E. & Tartaglia, J. Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L- and E3L-mutant viruses. Virology210, 254–263 (1995). ArticleCASPubMed Google Scholar
Beattie, E., Tartaglia, J. & Paoletti, E. Vaccinia virus-encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology183, 419–422 (1991). ArticleCASPubMed Google Scholar
Davies, M. V., Elroy-Stein, O., Jagus, R., Moss, B. & Kaufman, R. J. The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the α-subunit of eukaryotic initiation factor 2. J. Virol.66, 1943–1950 (1992). CASPubMedPubMed Central Google Scholar
Massung, R. F. et al. Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology201, 215–240 (1994). ArticleCASPubMed Google Scholar
Shchelkunov, S. N. et al. Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett.327, 321–324 (1993). ArticleCASPubMed Google Scholar
Davies, M. V., Chang, H. W., Jacobs, B. L. & Kaufman, R. J. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol.67, 1688–1692 (1993). CASPubMedPubMed Central Google Scholar
Sharp, T. V. et al. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate-binding regions of PKR: implications for PKR autoregulation. Virology250, 302–315 (1998). ArticleCASPubMed Google Scholar
Carroll, K., Elroy-Stein, O., Moss, B. & Jagus, R. Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2α-specific protein kinase. J. Biol. Chem.268, 12837–12842 (1993). CASPubMed Google Scholar
Rivas, C., Gil, J., Melkova, Z., Esteban, M. & Diaz-Guerra, M. Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2–5A synthetase enzyme. Virology243, 406–414 (1998). ArticleCASPubMed Google Scholar
Smith, E. J., Marie, I., Prakash, A., Garcia-Sastre, A. & Levy, D. E. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or IκB kinase but is blocked by vaccinia virus E3L protein. J. Biol. Chem.276, 8951–8957 (2001). ArticleCASPubMed Google Scholar
Liu, Y., Wolff, K. C., Jacobs, B. L. & Samuel, C. E. Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology289, 378–387 (2001). ArticleCASPubMed Google Scholar
Brandt, T. A. & Jacobs, B. L. Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J. Virol.75, 850–856 (2001). ArticleCASPubMedPubMed Central Google Scholar
Najarro, P., Traktman, P. & Lewis, J. A. Vaccinia virus blocks γ-interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. J. Virol.75, 3185–3196 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fruh, K., Simmen, K., Luukkonen, B. G., Bell, Y. C. & Ghazal, P. Virogenomics: a novel approach to antiviral drug discovery. Drug Discov. Today6, 621–627 (2001). ArticleCASPubMed Google Scholar
Manger, I. D. & Relman, D. A. How the host 'sees' pathogens: global gene expression responses to infection. Curr. Opin. Immunol.12, 215–218 (2000). ArticleCASPubMed Google Scholar
Dongre, A. R., Opiteck, G., Cosand, W. L. & Hefta, S. A. Proteomics in the post-genome age. Biopolymers60, 206–211 (2001). ArticleCASPubMed Google Scholar
Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000). ArticleCASPubMed Google Scholar
Kellam, P. Post-genomic virology: the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev. Med. Virol.11, 313–329 (2001). ArticleCASPubMed Google Scholar
Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet.2, 343–372 (2001). ArticleCASPubMed Google Scholar
Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292, 929–934 (2001). ArticleCASPubMed Google Scholar
Simmen, K. A. et al. Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl Acad. Sci. USA98, 7140–7145 (2001).Using high-density microarrays, this study identified the specific viral component that triggers the cellular IFN response as the envelope glycoprotein B (gB), highlighting a pioneering paradigm for the consequences of virus–receptor interactions. ArticleCASPubMedPubMed Central Google Scholar
Geiss, G. K. et al. Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J. Virol.75, 4321–4331 (2001). ArticleCASPubMedPubMed Central Google Scholar
Geiss, G. et al. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J. Biol. Chem.276, 30178–30182 (2001). ArticleCASPubMed Google Scholar
Gale, M. Jr et al. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol. Cell. Biol.18, 5208–5218 (1998).This study investigated the mechanisms of NS5A-mediated PKR regulation and the effect of ISDR mutations on this regulatory process, and proposed a model of PKR regulation by NS5A, which might have implications for therapeutic strategies against HCV. ArticleCASPubMedPubMed Central Google Scholar
Gale, M. J. Jr et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology230, 217–227 (1997). ArticleCASPubMed Google Scholar
Noguchi, T. et al. Effects of mutation in hepatitis C virus nonstructural protein 5A on interferon resistance mediated by inhibition of PKR kinase activity in mammalian cells. Microbiol. Immunol.45, 829–840 (2001). ArticleCASPubMed Google Scholar
Polyak, S. J. et al. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol.75, 6095–6106 (2001). ArticleCASPubMedPubMed Central Google Scholar
Girard, S. et al. An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology295, 272–283 (2002). ArticleCASPubMed Google Scholar
Bigger, C. B., Brasky, K. M. & Lanford, R. E. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol.75, 7059–7066 (2001). ArticleCASPubMedPubMed Central Google Scholar
Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nature Immunol.3, 392–398 (2002).This study highlighted the cross-talk between TLRs and IFN — two pivotal host anti-microbial pathways — and provided the first explanation for the mechanistic basis of the differential patterns of gene expression that are activated by different TLR agonists. ArticleCAS Google Scholar
Mita, Y., Dobashi, K., Shimizu, Y., Nakazawa, T. & Mori, M. Toll-like receptor 2 and 4 surface expressions on human monocytes are modulated by interferon-γ and macrophage colony-stimulating factor. Immunol. Lett.78, 97–101 (2001). ArticleCASPubMed Google Scholar
Miettinen, M., Sareneva, T., Julkunen, I. & Matikainen, S. IFNs activate toll-like receptor gene expression in viral infections. Genes Immun.2, 349–355 (2001). ArticleCASPubMed Google Scholar
Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature406, 782–787 (2000). ArticleCASPubMed Google Scholar
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001).This study showed that mammalian TLR3 recognizes dsRNA and TLR3 activation induces type I IFN production. It was also found that TLR3-deficient mice have reduced responses to poly(inosine:cytosine). ArticleCASPubMed Google Scholar
Zhou, A., Paranjape, J. M., Der, S. D., Williams, B. R. & Silverman, R. H. Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology258, 435–440 (1999). ArticleCASPubMed Google Scholar
Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunol.2, 835–841 (2001). ArticleCAS Google Scholar
O'Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell109, S121–S131 (2002). ArticleCASPubMed Google Scholar
Aaronson, D. S. & Horvath, C. M. A road map for those who know JAK–STAT. Science296, 1653–1655 (2002). ArticleCASPubMed Google Scholar
Heim, M. H. The Jak–STAT pathway: cytokine signalling from the receptor to the nucleus. J. Recept. Signal Transduct. Res.19, 75–120 (1999). ArticleCASPubMed Google Scholar
Yeh, T. C. & Pellegrini, S. The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell. Mol. Life Sci.55, 1523–1534 (1999). ArticleCASPubMed Google Scholar
Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell84, 431–442 (1996).This study generated and characterized Stat1-deficient mice, which have a complete lack of response to IFNs and are highly sensitive to microbial and viral infection, showing that STAT1 has an obligate and dedicated role in mediating IFN-dependent biological responses. ArticleCASPubMed Google Scholar
Cox, N. J. & Subbarao, K. Global epidemiology of influenza: past and present. Annu. Rev. Med.51, 407–421 (2000). ArticleCASPubMed Google Scholar
Patterson, K. D. & Pyle, G. F. The geography and mortality of the 1918 influenza pandemic. Bull. Hist. Med.65, 4–21 (1991). CASPubMed Google Scholar
Basler, C. F. et al. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc. Natl Acad. Sci. USA98, 2746–2751 (2001).By generating recombinant influenza viruses from cloned cDNAs, the group tested the 1918 pandemic fluNS1gene in a mouse model. The results indicate that interaction of the NS1 protein with host-cell factors is important for viral pathogenesis. ArticleCASPubMedPubMed Central Google Scholar
Taubenberger, J. K., Reid, A. H., Janczewski, T. A. & Fanning, T. G. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Phil. Trans. R. Soc. Lond. B356, 1829–1839 (2001). ArticleCAS Google Scholar
Patten, P. A., Howard, R. J. & Stemmer, W. P. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol.8, 724–733 (1997). ArticleCASPubMed Google Scholar
Pekrun, K. et al. Evolution of a human immunodeficiency virus type 1 variant with enhanced replication in pig-tailed macaque cells by DNA shuffling. J. Virol.76, 2924–2935 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chang, C. C. et al. Evolution of a cytokine using DNA family shuffling. Nature Biotechnol.17, 793–797 (1999).This study used DNA shuffling of a family of human IFN-α genes to derive variants that have increased antiviral activities in mouse cells, and showed that diverse cytokine gene families can be used as starting material to rapidly evolve cytokines that are more active than the native form. ArticleCAS Google Scholar
Weber, H., Valenzuela, D., Lujber, G., Gubler, M. & Weissmann, C. Single amino-acid changes that render human IFN-α2 biologically active on mouse cells. EMBO J.6, 591–598 (1987). ArticleCASPubMedPubMed Central Google Scholar