Clinical translation of angiogenesis inhibitors (original) (raw)
Folkman, J. in Harrison's Textbook of Internal Medicine 15th edn (eds Braunwald, E. et al.) 517–530 (McGraw–Hill, New York, 2001). Google Scholar
Hanahan, D. & Weinberg, R. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Hanahan, D. & Folkman, J. Parameters and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996.)Experimental evidence for the angiogenic switch. CASPubMed Google Scholar
Rak, J., Yu, J. L., Klement, G. & Kerbel, R. S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Invest. Dermatol. Symp. Proc.5, 24–33 (2000).This review summarizes the ability of almost 20 known oncogenes to regulate inducers or inhibitors of angiogenesis, and highlights the link between oncogenes and tumour angiogenesis. CAS Google Scholar
Relf, M. et al. Expression of the angiogenic factors vascular endothelial growth factor, acidic and basic fibroblast growth factor, tumour growth factor-β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res.57, 963–969 (1997). CASPubMed Google Scholar
Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature394, 485–490 (1998). CASPubMed Google Scholar
Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94, 715–725 (1998). CASPubMed Google Scholar
Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood92, 362–367 (1998). CASPubMed Google Scholar
Dameron, K. M., Volpert, O. V., Tainsky, M. A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science265, 1582–1584 (1994). CASPubMed Google Scholar
Kerbel, R. S. Inhibition of tumour angiogenesis as a strategy to circumvent acquired resistance to anticancer therapeutic agents. Bioessays13, 31–36 (1991).This commentary advanced the hypothesis that anti-angiogenic therapy might bypass acquired drug resistance by targeting the genetically stable, host endothelial cells of tumour vessels. It also raised the prospect of conventional chemotherapeutic drugs having antitumour properties, even against drug-resistant tumours, by targeting the dividing endothelial cells of tumour vessels — a theory which eventually led to the development of low-dose 'metronomic'/anti-angiogenic chemotherapy. CASPubMed Google Scholar
Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Anti-angiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature390, 404–407 (1997). CASPubMed Google Scholar
Kerbel, R. S., Viloria-Petit, A., Okada, F. & Rak, J. Establishing a link between oncogenes and tumor angiogenesis. Mol. Med.4, 286–295 (1998). CASPubMedPubMed Central Google Scholar
Rak, J., Yu, J. L., Kerbel, R. S. & Coomber, B. L. What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res.62, 1931–1934 (2002). CASPubMed Google Scholar
Viloria-Petit, A. et al. Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumour cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumours. Am. J. Pathol.151, 1523–1530 (1997). Google Scholar
Fernandez, A. et al. Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J. Natl Cancer Inst.93, 33–38 (2001). Google Scholar
Arbiser, J. L. et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl Acad. Sci. USA94, 861–866 (1997). CASPubMedPubMed Central Google Scholar
Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature400, 468–472 (1999). CASPubMed Google Scholar
Udagawa, T., Fernandez, A., Achilles, E. G., Folkman, J. & D'Amato, R. J. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J.16, 1361–1370 (2002). CASPubMed Google Scholar
Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor-1α. Genes Dev.14, 34–44 (2000). CASPubMedPubMed Central Google Scholar
Zhang, L. et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res.60, 3655–3661 (2000). CASPubMed Google Scholar
Sherif, Z. A., Nakai, S., Pirollo, K. F., Rait, A. & Chang, E. H. Down-modulation of bFGF-binding protein expression following restoration of p53 function. Cancer Gene Ther.8, 771–782 (2001). CASPubMed Google Scholar
Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumor biology: Herceptin acts as an anti-angiogenic cocktail. Nature416, 279–280 (2002). CASPubMed Google Scholar
Streit, M. et al. Thrombospondin-2: a potent endogenous inhibitor of tumour growth and angiogenesis. Proc. Natl Acad. Sci. USA96, 14888–14893 (1999). CASPubMedPubMed Central Google Scholar
Viloria-Petit, A. et al. Acquired resistance to the antitumour effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumour angiogenesis. Cancer Res.61, 5090–5101 (2001). CASPubMed Google Scholar
Koch, A. E. et al. Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. Arthritis Rheum.44, 31–40 (2001). CASPubMed Google Scholar
Ciardiello, F. et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res.7, 1459–1465 (2001). CASPubMed Google Scholar
Kaban, L. B. et al. Anti-angiogenic therapy of a recurrent giant cell tumour of the mandible with interferon alfa-2α. Pediatrics103, 1145–1149 (1999). CASPubMed Google Scholar
Marler, J. J. et al. Successful anti-angiogenic therapy of giant cell angioblastoma with interferon α 2β: report of two cases. Pediatrics109, 1–5 (2002). Google Scholar
Singh, R. K. et al. Interferons α and β down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl Acad. Sci. USA92, 4562–4566 (1995). CASPubMedPubMed Central Google Scholar
Brouty Boye, D. & Zetter, B. R. Inhibition of cell motility by interferon. Science208, 516–518 (1980). CASPubMed Google Scholar
Kisker, O. et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumour model. Cancer Res.61, 7669–7674 (2001). CASPubMed Google Scholar
Ingber, D. et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature348, 555–557 (1990). CASPubMed Google Scholar
Griffith, E. D. et al. Methionine aminopeptidase (type 2) is the common target for aniogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol.4, 461–471 (1997). CASPubMed Google Scholar
Sin, N. et al. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl Acad. Sci. USA94, 6099–6103 (1997). CASPubMedPubMed Central Google Scholar
Kudelka, A. P., Verschraegen, C. F. & Loyer, E. Complete remission of metastatic cervical cancer with the angiogenesis inhibitor, TNP-470. N. Engl. J. Med.338, 991–992 (1998). CASPubMed Google Scholar
Bhargava, P. et al. A study of TNP-470 in patients with advanced cancer. Proc. Am. Assoc. Cancer Res.38, 221, abstract 1489 (1997). Google Scholar
Stadler, W. M. et al. Multi-institutional study of the angiogenesis inhibitor TNP-470 in metastatic renal carcinoma. J. Clin. Oncol.17, 2541–2545 (1999). CASPubMed Google Scholar
Zukiwski, A. et al. Phase I trial of the angiogenesis inhibitor TNP-470 (AGM-1470) in patients (Pts) with androgen independent prostate cancer (AI PCa). Proc. Am. Assoc. Soc. Clin. Oncol.13, A795 (1994). Google Scholar
Dezube, B. J. et al. Fumagillin analog in the treatment of Kaposi's sarcoma: a phase I AIDS Clinical Trial Group study. AIDS Clinical Trial Group No. 215 Team. J. Clin. Oncol.16, 1444 (1998). CASPubMed Google Scholar
Jain, R. K. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl Cancer Inst.81, 570–576 (1989).The demonstration that increased tissue pressure in tumours results from increased permeability of tumour vessels and interferes with delivery of therapeutic agents to tumours. CASPubMed Google Scholar
Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia initiated angiogenesis. Nature359, 843–845 (1992). CASPubMed Google Scholar
Birner, P. et al. Overexpression of hypoxia-inducible factor-1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res.60, 4693–4696 (2000). CASPubMed Google Scholar
Aebersold, D. M. et al. Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res.61, 2911–2916 (2001). CASPubMed Google Scholar
Shima, D. T., Deutsch, U. & D'Amore, P. A. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett.370, 203–208 (1995). CASPubMed Google Scholar
Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med.1, 149–153 (1995). CASPubMed Google Scholar
Browder, T. et al. Anti-angiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res.60, 1878–1886 (2000). CASPubMed Google Scholar
Teicher, B. A. et al. Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat. Oncol. Invest.2, 269–276 (1995). Google Scholar
Mauceri, H. J. et al. Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature394, 287–291 (1998). CASPubMed Google Scholar
Teicher, B. A. et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int. J. Cancer57, 920–925 (1994). CASPubMed Google Scholar
Gorski, D. H. et al. Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res.59, 3374–3378 (1999). CASPubMed Google Scholar
Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med.7, 987–989 (2001). CASPubMed Google Scholar
Herbst, R. S. et al. Phase I clinical trial of recombinant human endostatin (rHE) in patients (pts) with solid tumors: Pharmacokinetic (pk), safety and efficacy analysis using surrogate endpoints of tissue and radiologic response. Proc. Am. Soc. Clin. Oncol.20, 3a, abstract 9 (2001). Google Scholar
Libutti, S. K., Choyke, P., Carrasquillo, J. A., Bacharach, S., & Neumann, R. D. Monitoring responses to antiangiogenic agents using noninvasive imaging tests. Cancer J. Sci. Am.5, 252–256 (1999). CASPubMed Google Scholar
Kurdziel, K. et al. Using PET 18F-FDG, 11CO and 15O–water for monitoring prostate cancer during a phase II anti-angiogenic drug trial with thalidomide. Clin. Positron Imaging3, 144 (2000). CASPubMed Google Scholar
Choyke, P. L., Knopp, M. V. & Libutti, S, K., Special techniques for imaging blood flow to tumors. Cancer J.8, 109–118 (2002). PubMed Google Scholar
Rak, J. W., St Croix, B. D. & Kerbel, R. S. Consequences of angiogenesis for tumour progression, metastasis and cancer therapy. Anti-Cancer Drugs6, 3–18 (1995). CASPubMed Google Scholar
Dixelius, J. et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood95, 3403–3411(2000). CASPubMed Google Scholar
Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature379, 88–91 (1996). CASPubMed Google Scholar
Blagosklonny, M. V. Hypoxia-inducible factor: Achilles' heel of anti-angiogenic cancer therapy. Int. J. Oncol.19, 257–262 (2001). CASPubMed Google Scholar
Yu, J. L., Rak, J., Carmeliet, P. & Coomber, B. L. Heterogenous vascular dependence of tumour populations. Am. J. Pathol.158, 1325–1334 (2001). CASPubMedPubMed Central Google Scholar
Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409, 207–211 (2001). CASPubMed Google Scholar
Furuwatari, C. et al. A comprehensive system to explore p53 mutations. Am. J. Clin. Pathol.110, 368–373 (1998). CASPubMed Google Scholar
Monestiroli, S. et al. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res.61, 4341–4344 (2001). CASPubMed Google Scholar
Beecken, W.-D. C. et al. Effect of anti-angiogenic therapy on slowly growing, poorly vascularized tumours in mice. J. Natl Cancer Inst.93, 382–387 (2001). CASPubMed Google Scholar
Gorelik, E., Segal, S. & Feldman, M. Growth of a local tumour exerts a specific inhibitory effect on progression of lung metastases. Int. J. Cancer21, 617–625 (1978). CASPubMed Google Scholar
Perletti, G. et al. Antitumour activity of endostatin against carcinogen-induced rat primary mammary tumours. Cancer Res.60, 1793–1796 (2000). CASPubMed Google Scholar
Sugarbaker, E. V., Thornwaite, J. & Ketcham, A. S. in Progress in Cancer Research and Therapy (eds Day, S. B., Myers, W. P., Stansly, P., Garatini, S. & Lewis, M. G.) 227–240 (Raven Press, New York, 1997). Google Scholar
Gorelik, E. Concomitant tumour immunity and the rsistance to a second tumour challenge. Adv. Cancer Res.39, 71–120 (1983). CASPubMed Google Scholar
O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell79, 315–328 (1994). CASPubMed Google Scholar
Camphausen, K. et al. Radiation therapy to a primary tumour accelerates metastatic growth in mice. Cancer Res.61, 2207–2211 (2001). CASPubMed Google Scholar
Lay, A. J. et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature408, 869–873 (2000). CASPubMed Google Scholar
O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumour growth. Cell88, 277–285 (1997). ArticleCASPubMed Google Scholar
Wen, W., Moses, M. A., Wiederschain, D., Arbiser, J. L. & Folkman, J. The generation of endostatin is mediated by elastase. Cancer Res.59, 6052–6056 (1999). CASPubMed Google Scholar
O'Reilly, M. S., Pirie–Shepherd, S., Lane, W. S. & Folkman, J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science285, 1926–1928 (1999). CASPubMed Google Scholar
Kisker, O. et al. Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res.61, 7298–7304 (2001). CASPubMed Google Scholar
Folkman J. in Accomplishments in Cancer Research (eds Wells, S. A. Jr & Sharpe, P. A.) 32–44 (Lippincott Williams & Wilkins, Pennsylvania, 1998). Google Scholar
Brem, H. & Folkman, J. Analysis of experimental anti-angiogenic therapy. J. Pediatr. Surg.28, 445–451 (1993). CASPubMed Google Scholar
Hori, K., Li, H. C., Saito, S. & Sato, Y. Increased growth and incidence of lymph node metastases due to the angiogenesis inhibitor AGM-1470. Br. J. Cancer75, 1730–1734 (1997). CASPubMedPubMed Central Google Scholar
Folkman, J., Mulliken, J. B. & Ezekowitz, R. A. B. in The Clinical Applications of the Interferons (eds Stuart–Harris, R. & Penny, R.) 255–265 (Chapman & Hall Medical, London, 1997). Google Scholar
Kerbel, R. S. et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for combination therapy. Cancer Metastasis Rev.20, 79–86 (2001). CASPubMed Google Scholar
Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumour regression without overt toxicity. J. Clin. Invest.105, R15–R24 (2000). CASPubMedPubMed Central Google Scholar
Yang, J. C., Haworth, L., Steinberg, S. M., Rosenberg, S. A. & Novotny, W. A randomized double-blind placebo-controlled trial of bevacizumab anti-VEGF antibody demonstrating a prolongation time to progression in patients with metastatic renal cancer. Proc. Am. Soc. Clin. Oncol.21, 15 (2002). Google Scholar
Belotti, D. et al. The microtubule-affecting drug paclitaxel has anti-angiogenic activity. Clin. Cancer Res.2, 1843–1849 (1996). CASPubMed Google Scholar
Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group in Cancer. J. Clin. Oncol.16, 301–308 (1998).
Gabra, H., Cameron, D. A., Lee, L. E., Mackay, J. & Leonard, R. C. Weekly doxorubicin and continuous infusional 5-fluorouracil for advanced breast cancer. Br. J. Cancer74, 2008–2012 (1996). CASPubMedPubMed Central Google Scholar
Hansen, R. M. et al. Phase III study of bolus versus infusion fluorouracil with or without cisplatin in advanced colorectal cancer. J. Natl Cancer Inst.88, 668–674 (1996). CASPubMed Google Scholar
Abu-Rustum, N. R. et al. Salvage weekly paclitaxel in recurrent ovarian cancer. Semin. Oncol.24 (Suppl. 15), 62–67 (1997). Google Scholar
Loffler, T. M., Freund, W., Lipke, J. & Hausamen, T. U. Schedule- and dose-intensified paclitaxel as weekly 1-hour infusion in pretreated solid tumours: results of a phase I/II trial. Semin. Oncol.23 (Suppl. 16), 32–34 (1996). CASPubMed Google Scholar
Kakolyris, S. et al. Treatment of non-small-cell lung cancer with prolonged oral etoposide. Am. J. Clin. Oncol.21, 505–508 (1998). CASPubMed Google Scholar
Chamberlain, M. C. Recurrent supratentorial malignant gliomas in children. Long-term salvage therapy with oral etoposide. Arch. Neurol.54, 554–558 (1997). CASPubMed Google Scholar
Neskovic–Konstantinovic, Z. B., Bosnjak, S. M., Radulovic, S. S. & Mitrovic, L. B. Daily oral etoposide in metastatic breast cancer. Anticancer Drugs7, 543–547 (1996). PubMed Google Scholar
Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumour angiogenesis in mice. J. Clin. Invest.105, 1045–1047 (2000). CASPubMedPubMed Central Google Scholar
Takahashi, N., Haba, A., Matsuno, F. & Seon, B. K. Anti-angiogenic therapy of established tumours in skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res.61, 7846–7854 (2001). CASPubMed Google Scholar
Soffer, S. Z. et al. Novel use of an established agent: Topotecan is anti-angiogenic in experimental Wilms tumour. J. Pediatr. Surg.36, 1781–1784 (2001). CASPubMed Google Scholar
Gimbrone, M. A. Jr, Cotran, R. S., Leapman, S. B. & Folkman, J. Tumor growth and neovascularization: an experimental model using rabbit cornea. J. Natl Cancer Inst.52, 413–427 (1974). PubMed Google Scholar
D'Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA91, 4082–4085 (1994). CASPubMedPubMed Central Google Scholar
Verheul, H. M. W., Panigray, D., Yuan, J. & D'Amato, R. J. Combination oral anti-angiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br. J. Cancer79, 114–118 (1999). CASPubMedPubMed Central Google Scholar
Singhal, S. et al. Antitumour activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med.341, 1565–1571 (1999). CASPubMed Google Scholar
Rajkumar, S. V. et al. Thalidomide in the treatment of relapsed multiple myeloma. Mayo Clin. Proc.75, 897–901 (2000). CASPubMed Google Scholar
Zomas, A., Anagnostopoulos, N. & Dimopoulos, M. A. Successful treatment of multiple myeloma relapsing after high-dose therapy and autologous transplantation with thalidomide as a single agent. Bone Marrow Transplant.25, 1319–1320 (2000). CASPubMed Google Scholar
Weber, D. M. et al. Angiogenesis factors and sensitivity to thalidomide in previously untreated multiple myeloma (MM). Blood96, 168a, abstract 724 (2000). Google Scholar
Pini, M. et al. Low-dose of thalidomide in the treatment of refractory myeloma. Haematologica85, 1111–1112 (2000). CASPubMed Google Scholar
Palmblad, J. Angiogenesis in hematologic malignancies with focus on multiple myeloma. Haema4, 89–98 (2001). Google Scholar
Folkman, J., Browder, T. & Palmblad, J. Angiogenesis research: guidelines for translation to clinical application. Thromb. Haemost.86, 23–33 (2001). CASPubMed Google Scholar
Settles, B. et al. Down-regulation of cell adhesion molecules LFA-1 and ICAM-1 after in vitro treatment with the anti-TNF-α agent thalidomide. Cell Mol Biol (Noisy-le-grand)47, 1105–1114 (2001). CAS Google Scholar
Bauditz, J., Wedel, S. & Lochs, H. Thalidomide reduces tumour necrosis factor α and interleukin 12 production in patients with chronic active Crohn's disease. Gut50, 196–200 (2002). CASPubMedPubMed Central Google Scholar
D'Amato, R. J., Lentzsch, S., Anderson, K. C. & Rogers, M. S. Mechanism of action of thalidomide and 3-amino-thalidomide in multiple myeloma. Semin. Oncol.28, 597–601 (2001). CASPubMed Google Scholar
Folkman, J. Angiogenesis-dependent disease. Semin. Oncol.28, 536–542 (2001). CASPubMed Google Scholar
Bertolini, F. et al. Thalidomide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers. Ann. Oncol.12, 987–990 (2001). CASPubMed Google Scholar
Raje, N. & Anderson, K. Thalidomide: a revival story. N. Engl. J. Med.341, 1606–1609 (1999). CASPubMed Google Scholar
Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumour angiogenesis and metastasis: correlation in invasive breast carcinoma. N. Engl. J. Med.324, 1–8 (1991). CASPubMed Google Scholar
Rajkumar, S. V., Fonseca, R., Witzig, T. E., Gertz, M. A. & Greipp, P. R. Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia13, 469–472 (1999). CASPubMed Google Scholar
Folkman, J. in Cancer Medicine 5th edn (eds Holland, J. F. et al.) 132–152 (B. C. Decker, Inc., Ontario, Canada, 2000). Google Scholar
Hlatky, L., Hahnfeldt, P. & Folkman, J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J. Natl Cancer Inst.94, 883–893 (2002). PubMed Google Scholar
Pinedo, H. M., Verheul, H. M. W., D'Amato, R. J. & Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet352, 1775–1777 (1998). CASPubMed Google Scholar
Sidky, Y. A. & Borden, E. C. Inhibition of angiogenesis by interferons: effects on tumour- and lymphocyte-induced vascular responses. Cancer Res.47, 5155–5161 (1987). CASPubMed Google Scholar
Dvorak, H. F. & Gresser, I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumours in mice. J. Natl Cancer Inst.81, 497–502 (1989). CASPubMed Google Scholar
Slaton, J. W., Perrotte, P., Inoue, K., Dinney, C. P. N. & Fidler, I. J. Interferon-α-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin. Cancer Res.5, 2726–2734 (1999). CASPubMed Google Scholar
Takahashi, K. et al. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J. Clin. Invest.93, 2357–2364 (1994). CASPubMedPubMed Central Google Scholar
Bielenberg, D. R. et al. Progressive growth of infantile cutaneous hemangiomas is directly correlated with hyperplasia and angiogenesis of adjacent epidermis and inversely correlated with expression of the endogenous angiogenesis inhibitor, IFN-β. Int. J. Oncol.14, 401–408 (1999). CASPubMed Google Scholar
White, C. W., Sondheimer, H. M., Crouch, E. C., Wilson, H. & Fan, L. L. Treatment of pulmonary hemangiomatosis with recombinant interferon α-2α. N. Engl. J. Med.320, 1197–1200 (1989). CASPubMed Google Scholar
Folkman, J. Successful treatment of an angiogenic disease. N. Engl. J. Med.320, 1211–1212 (1989). CASPubMed Google Scholar
Ezekowitz, R. A., Mulliken, J. B. & Folkman, J. Interferon α2A therapy for 'life-threatening' hemangiomas in infancy. N. Engl. J. Med.326, 1456–1463 (1992). CASPubMed Google Scholar
Mulliken, J. B. et al. Pharmacologic therapy for endangering hemangiomas. Curr. Opin. Dermatol.2, 109–113 (1995). Google Scholar
Kaban, L. B. et al. Anti-angiogenic therapy with interferon-α for giant cell lesions of the jaws. J. Oral Maxillofac. Surg.60, 1103–1111 (2002). PubMed Google Scholar
Palmieri, G., Montella, L., Martignetti, A. & Bianco, A. R. Interferon α-2b at low doses as long-term anti-angiogenic treatment of a metastatic intracranial hemangioendothelioma: a case report. Oncol. Rep.7, 145–149 (2000). CASPubMed Google Scholar
Deb, G. et al. Hemangioendotheliomas: successful therapy with interferon-α. A study in association with the Italian Pediatric Haematology/Oncology Society (AIEOP). Med. Pediatr. Oncol.38, 118–119 (2002). PubMed Google Scholar
Hansma, A. H. G. et al. A phase I study of rhEndostatin: continuous intravenous (i. v.) followed by subcutaneous (s. c.) administration. Proc. Am. Soc. Clin. Oncol. 21, abstract 436 (2002).
Folkman, J., Hahnfeldt, P. & Hlatky, L. in The Development of Human Gene Therapy (ed. Friedmann, T.) 527–543 (Cold Spring Harbor Laboratory Press, New York, 1998). Google Scholar
Blezinger, P. et al. Systemic inhibition of tumour growth and tumour metastases by intramuscluar administration of the endostatin gene. Nature Biotechnol.17, 343–348 (1999). CAS Google Scholar
Ding, I. et al. Intratumoural administration of endostatin plasmid inhibits vascular growth and perfusion in Mca murine mammary carcinoma. Cancer Res.61, 526–531 (2001). CASPubMed Google Scholar
Read, T. A. et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nature Biotechnol.19, 29–34 (2001). CAS Google Scholar
Joki, T. et al. Continuous release of endostatin from microencapsulated engineered cells for tumour therapy. Nature Biotechnol.19, 35–39 (2001). CAS Google Scholar
Kuo, C. J. et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl Acad. Sci. USA98, 4605–4610 (2001). CASPubMedPubMed Central Google Scholar
Feldman, A. L. et al. Effect of retroviral endostatin gene transfer on subcutaneous and intraperitoneal growth of murine tumors. J. Natl Cancer Inst.93, 1014–1020 (2001). CASPubMed Google Scholar
Scappaticci, F. A. et al. Combination angiostatin and endostatin gene transfer induces synergistic activity in vitro and antitumour efficacy in leukemia and solid tumours in mice. Mol. Ther.3, 186–196 (2001). CASPubMed Google Scholar
Shi, W., Teschendorf, C., Muzyczka, N. & Siemann, D. W. Adeno-associated virus-mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo. Cancer Gene Ther.9, 513–521 (2002). CASPubMed Google Scholar
Calvo, A., Feldman, A. L., Libutti, S. K. & Green, J. E. Adenovirus-mediated endostatin delivery results in inhibition of mammary gland tumor growth in C3 (1)/SV40 T-antigen transgenic mice. Cancer Res.62, 3934–3938 (2002). CASPubMed Google Scholar
Indraccolo, S. et al. Differential effects of angiostatin, endostatin and interferon-α1 gene transfer on in vivo growth of human breast cancer cells. Gene Ther.9, 867–878 (2002). CASPubMed Google Scholar
Pawliuk, R. et al. Continuous intravascular secretion of endostatin in mice from transduced hematopoietic stem cells. Mol. Ther.5, 345–351 (2002). CASPubMed Google Scholar
Eisterer, W. et al. Unfulfilled promise of endostatin in a gene therapy xenotransplant model of human acute lymphocytic leukemia. Mol. Ther.5, 352–359 (2002). CASPubMed Google Scholar
Folkman, J. Regulation of angiogenesis. Blood82 (Suppl. 1), 60 (1993).
Brunner, G., Nguyen, H., Gabrilove, J., Rifkin, D. B. & Wilson, E. L. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood81, 631–638 (1993). CASPubMed Google Scholar
Nguyen, M. et al. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl Cancer Inst.86, 356–361 (1994). CASPubMed Google Scholar
Vacca, A. et al. Bone marrow angiogenesis and progression in multiple myeloma. Br. J. Haematol.87, 503–508 (1994). CASPubMed Google Scholar
Ribatti, D. et al. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br. J. Cancer79, 451–455 (1999). CASPubMedPubMed Central Google Scholar
Vacca, A. et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion, parallel progression of human multiple myeloma. Blood93, 3064–3073 (1999). CASPubMed Google Scholar
Vacca, A., Ribatti, D., Roncali, L. & Dammacco, F. Angiogenesis B cell lymphoproliferative diseases. Biological and clinical studies. Leuk. Lymphoma20, 27–38 (1995). CASPubMed Google Scholar
Rak, J. et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res.55, 4575–4580 (1995). CASPubMed Google Scholar
Brem, S., Cotran, R. & Folkman, J. Tumour angiogenesis: a quantitative method for histologic grading. J. Natl Cancer Inst.48, 347–356 (1972). CASPubMed Google Scholar
Mlynek, M. L., van Beunigen, D., Leder, L. D. & Streffer, C. Measurement of the grade of vascularisation in histological tumour tissue sections. Br. J. Cancer52, 945–948 (1985). CASPubMedPubMed Central Google Scholar
Srivastava, A., Laidler, P., Davies, R. P., Horgan, K. & Hughes, L. E. The prognostic significance of tumour vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study. Am. J. Pathol.133, 419–423 (1988). CASPubMedPubMed Central Google Scholar
Achilles, E.-G. et al. Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for 'no take' of human tumours in mice. J. Natl Cancer Inst.93, 1075–1081 (2001). CASPubMed Google Scholar
Gasparini, G. & Harris, A. L. in Antiangiogenic Agents in Cancer Therapy (ed. Teicher, B. A.) 317–339 (Humana Press, New Jersey, 1999). Google Scholar
Moser, T. L. et al. Angiogstatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl Acad. Sci. USA96, 2811–2816 (1999). CASPubMedPubMed Central Google Scholar
Troyanovsky, B., Levchenko, T., Mansson, G., Matvjenko, O. & Holmgren, L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell Biol.152, 1247–1254 (2001). CASPubMedPubMed Central Google Scholar
Colorado, P. C. et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res.60, 2520–2526 (2000). CASPubMed Google Scholar
Kamphaus, G. D. et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J. Biol. Chem.275, 1209–1215 (2000). CASPubMed Google Scholar
Kanthou, C. & Tozer, G. M. The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskleton and early membrane blebbing in human endothelial cells. Blood99, 2060–2069 (2002). CASPubMed Google Scholar
Reimer, C. L. et al. Antineoplastic effects of chemotherapeutic agents are potentiated by NM-3, and inhibitor of angiogenesis. Cancer Res.62, 789–795 (2002). CASPubMed Google Scholar
Maeshima, Y. et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J. Biol. Chem.276, 15240–15248 (2001). CASPubMed Google Scholar
Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science295, 140–143 (2002). CASPubMed Google Scholar
Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res.6, 3056–3061 (2000). CASPubMed Google Scholar
Tille, J. C. et al. Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J. Pharmacol. Exp. Ther.299, 1073–1085 (2001). CASPubMed Google Scholar
Mendel, D. B. et al. The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin. Cancer Res.6, 4848–4858 (2000). CASPubMed Google Scholar
Hoekman, K. SU6668, a multitargeted angiogenesis inhibitor. Cancer J.7, S134–S138 (2001). PubMed Google Scholar
Rak, J. et al. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev.14, 263–277 (1995). CASPubMed Google Scholar
Grugel, S., Finkenzeller, G., Weindel, K., Barleon, B. & Marme, D. Both v-Ha-ras and v-raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J. Biol. Chem.270, 25915–25919 (1995). CASPubMed Google Scholar
Rak, J. et al. Oncogenes and tumor angiogenesis: different modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res.60, 490–498 (2000). CASPubMed Google Scholar
Zabrenetsky, V., Harris, C. C., Steeg, P. S. & Roberts, D. D. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int. J. Cancer59, 191–195 (1994). Google Scholar
Mukhopadhyay, D., Tsiokas, L. & Sukhatme, V. P. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res.55, 6161–6165 (1995). CASPubMed Google Scholar
Mukhopadhyay, D. et al. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature375, 577–581 (1995). CASPubMed Google Scholar
Slack, J. L. & Bornstein, P. Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Differ.5, 1373–1380 (1994). CASPubMed Google Scholar
Bein, K., Ware, J. A. & Simons, M. Myb-dependent regulation of thrombospondin 2 expression. Role of mRNA stability. J. Biol. Chem.273, 21423–21429 (1998). CASPubMed Google Scholar
Meitar, D., Crawford, S. E., Rademaker, A. W. & Cohn, S. L. Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J. Clin. Oncol.14, 405–414 (1996). CASPubMed Google Scholar
Fotsis, T. et al. Down-regulation of endothelial cell growth inhibitors by enhanced MYCN oncogene expression in human neuroblastoma cells. Eur. J. Biochem.263, 757–764 (1999). CASPubMed Google Scholar
Pelengaris, S., Littlewood, T., Khan, M, Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell3, 565–577 (1999). CASPubMed Google Scholar
Perrotte, P. et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res.5, 257–265 (1999). CASPubMed Google Scholar
Sheibani, N. & Frazier, W. A. Repression of thrombospondin-1 expression, a natural inhibitor of angiogenesis, in polyoma middle T transformed NIH3T3 cells. Cancer Lett.107, 45–52 (1996). CASPubMed Google Scholar
Saez, E. et al. c-Fos is required for malignant progression for skin tumors. Cell82, 721–732 (1995). CASPubMed Google Scholar
McGregor, L. M. et al. Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc. Natl Acad. Sci. USA96, 4540–4545 (1999). CASPubMedPubMed Central Google Scholar
Le Buanec, H. et al. HPV-16 E7 but not E6 oncogenic protein triggers both cellular immunosuppression and angiogenic processes. Biomed. Pharmacother.53, 424–531 (1999). CASPubMed Google Scholar
Lopez-Ocejo, O. et al. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene19, 4611–4620 (2000). CASPubMed Google Scholar
Jiang, B. H., Zheng, J. Z., Aoki, M. & Vogt, P. K. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc. Natl Acad. Sci. USA97, 1749–1753 (2000). CASPubMedPubMed Central Google Scholar
Auvinen, M. et al. Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res.57, 3016–3025 (1997). CASPubMed Google Scholar
Heaney, A. P., Horwitz, G. A., Wang, Z., Singson, R. & Melmed, S. Early involvement of estrogen-inducing pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nature Med.5, 1317–1321 (1999). CASPubMed Google Scholar
Fu, X., Roberts, W. G., Nobile, V., Shapiro, R. & Kamps, M. P. mAngiogenin-3, a target of oncoprotein E2a-Pbx1, encodes a new angiogenic member of the angiogenin family. Growth Factors17, 125–137 (1999). CASPubMed Google Scholar