X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation (original) (raw)
References
Meyer, B.J. & Casson, L.P. Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell47, 871–881 (1986). ArticleCAS Google Scholar
Chuang, P.T., Albertson, D.G. & Meyer, B.J. DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell79, 459–474 (1994). ArticleCAS Google Scholar
Davis, T.L. & Meyer, B.J. SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome. Development124, 1019–1031 (1997). CAS Google Scholar
Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet.36, 233–278 (2002). ArticleCAS Google Scholar
Baugh, L.R., Hill, A.A., Slonim, D.K., Brown, E.L. & Hunter, C.P. Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development130, 889–900 (2003). ArticleCAS Google Scholar
Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA98, 218–223 (2001). ArticleCAS Google Scholar
Hirano, T. Condensins: organizing and segregating the genome. Curr. Biol.15, R265–R275 (2005). ArticleCAS Google Scholar
Hagstrom, K.A., Holmes, V.F., Cozzarelli, N.R. & Meyer, B.J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev.16, 729–742 (2002). ArticleCAS Google Scholar
Lieb, J.D., Albrecht, M.R., Chuang, P.T. & Meyer, B.J. MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation. Cell92, 265–277 (1998). ArticleCAS Google Scholar
Csankovszki, G., McDonel, P. & Meyer, B.J. Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science303, 1182–1185 (2004). ArticleCAS Google Scholar
McDonel, P., Jans, J., Peterson, B.K. & Meyer, B.J. Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature444, 614–618 (2006). ArticleCAS Google Scholar
Chu, D.S. et al. A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev.16, 796–805 (2002). ArticleCAS Google Scholar
Li, W., Streit, A., Robertson, B. & Wood, W.B. Evidence for multiple promoter elements orchestrating male-specific regulation of the her-1 gene in Caenorhabditis elegans. Genetics152, 237–248 (1999). CASPubMedPubMed Central Google Scholar
Dawes, H.E. et al. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science284, 1800–1804 (1999). ArticleCAS Google Scholar
Buck, M.J., Nobel, A.B. & Lieb, J.D. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol.6, R97 (2005). Article Google Scholar
Miller, L.M., Plenefisch, J.D., Casson, L.P. & Meyer, B.J. xol-1: a gene that controls the male modes of both sex determination and X chromosome dosage compensation in C. elegans. Cell55, 167–183 (1988). ArticleCAS Google Scholar
Hodgkin, J., Zellan, J.D. & Albertson, D.G. Identification of a candidate primary sex determination locus, fox-1, on the X chromosome of Caenorhabditis elegans. Development120, 3681–3689 (1994). CASPubMed Google Scholar
Nicoll, M., Akerib, C.C. & Meyer, B.J. X-chromosome-counting mechanisms that determine nematode sex. Nature388, 200–204 (1997). ArticleCAS Google Scholar
Wang, B.D., Eyre, D., Basrai, M., Lichten, M. & Strunnikov, A. Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol. Cell. Biol.25, 7216–7225 (2005). ArticleCAS Google Scholar
Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature430, 573–578 (2004). ArticleCAS Google Scholar
Glynn, E.F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol.2, E259 (2004). Article Google Scholar
Hsu, D.R., Chuang, P.T. & Meyer, B.J. DPY-30, a nuclear protein essential early in embryogenesis for Caenorhabditis elegans dosage compensation. Development121, 3323–3334 (1995). CASPubMed Google Scholar
Nagy, P.L., Griesenbeck, J., Kornberg, R.D. & Cleary, M.L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA99, 90–94 (2002). ArticleCAS Google Scholar
Lewis, J.A. & Fleming, J.T. Basic culture methods. Methods Cell Biol.48, 3–29 (1995). ArticleCAS Google Scholar
Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol.17, 974–978 (1999). ArticleCAS Google Scholar
Selzer, R.R. et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosom. Cancer44, 305–319 (2005). ArticleCAS Google Scholar
Liu, X.S., Brutlag, D.L. & Liu, J.S. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol.20, 835–839 (2002). ArticleCAS Google Scholar
Liu, X., Brutlag, D.L. & Liu, J.S. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput. 127–138 (2001).
Workman, C.T. et al. enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res.33, W389–W392 (2005). ArticleCAS Google Scholar