Target mimicry provides a new mechanism for regulation of microRNA activity (original) (raw)

References

  1. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).
    Article CAS Google Scholar
  2. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
    Article CAS Google Scholar
  3. Jones-Rhoades, M.W., Bartel, D.P. & Bartel, B. MicroRNAs and their regulatory roles in Plants. Annu. Rev. Plant Biol. 38, 19–53 (2006).
    Article Google Scholar
  4. Mallory, A.P. & Vaucheret, H. Functions of microRNAs and related small RNAs in plants. Nat. Genet. 38, S31–S36 (2006).
    Article CAS Google Scholar
  5. Allen, E., Xie, Z., Gustafson, A.M. & Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).
    Article CAS Google Scholar
  6. Schwab, R. et al. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8, 517–527 (2005).
    Article CAS Google Scholar
  7. Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004).
    Article CAS Google Scholar
  8. Simón-Mateo, C. & García, J.A. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J. Virol. 80, 2429–2436 (2006).
    Article Google Scholar
  9. Fujii, H., Chiou, T.J., Lin, S.I., Aung, K. & Zhu, J.K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 2038–2043 (2005).
    Article CAS Google Scholar
  10. Chiou, T.J. et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412–421 (2006).
    Article CAS Google Scholar
  11. Aung, K. et al. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000–1011 (2006).
    Article CAS Google Scholar
  12. Bari, R., Datt Pant, B., Stitt, M. & Scheible, W.R. PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988–999 (2006).
    Article CAS Google Scholar
  13. Poirier, Y. & Bucher, M. Phosphate transport and homeostasis in Arabidopsis. in The Arabidopsis Book (eds. Sommerville, C.R. & Meyerowitz, E.M.) (American Society of Plant Biologists, Rockville, Maryland, 2002).
    Google Scholar
  14. Ticconi, C.A. & Abel, S. Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci. 9, 548–555 (2004).
    Article CAS Google Scholar
  15. Franco-Zorrilla, J.M. et al. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293 (2004).
    Article CAS Google Scholar
  16. Burleigh, S.H. & Harrison, M.J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol. Biol. 34, 199–208 (1997).
    Article CAS Google Scholar
  17. Burleigh, S.H. & Harrison, M.J. The down regulation of _Mt4_-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol. 119, 241–248 (1999).
    Article CAS Google Scholar
  18. Liu, C., Muchhal, U.S. & Raghothama, K.G. Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Mol. Biol. 33, 867–874 (1997).
    Article CAS Google Scholar
  19. Martín, A.C. et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24, 559–567 (2000).
    Article Google Scholar
  20. Shin, H., Shin, H.S., Chen, R. & Harrison, M.J. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J. 45, 712–726 (2006).
    Article CAS Google Scholar
  21. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197 (2004).
    Article CAS Google Scholar
  22. Axtell, M.J., Rajagopalan, R. & Bartel, D.P. A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577 (2006).
    Article CAS Google Scholar
  23. Wu, G. & Poethig, R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547 (2006).
    Article CAS Google Scholar
  24. Palatnik, J.F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).
    Article CAS Google Scholar
  25. Franco-Zorrilla, J.M., Martin, A.C., Leyva, A. & Paz-Ares, J. Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol. 138, 847–857 (2005).
    Article CAS Google Scholar
  26. Ames, B.N. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8, 115–118 (1966).
    Article CAS Google Scholar
  27. Baulcombe, D.C., Saunders, G.R., Bevan, M.W., Mayo, M.A. & Harrison, B.D. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321, 446–449 (1986).
    Article CAS Google Scholar
  28. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris Life Sci. 316, 15–18 (1993).
    Google Scholar
  29. Jiménez, I., López, L., Alamillo, J.M., Valli, A. & García, J.A. Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol. Plant Microb. Interact. 19, 350–358 (2006).
    Article Google Scholar
  30. González, E., Solano, R., Rubio, V., Leyva, A. & Paz-Ares, J. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17, 3500–3512 (2005).
    Article Google Scholar

Download references