Imprinted X inactivation maintained by a mouse Polycomb group gene (original) (raw)
References
Heard, E., Clerc, P. & Avner, P. X-chromosome inactivation in mammals. Annu. Rev. Genet.31, 571–610 (1997). ArticleCAS Google Scholar
Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev.11, 156–166 (1997). ArticleCAS Google Scholar
Faust, C., Lawson, K.A., Schork, N.J., Thiel, B. & Magnuson, T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development125, 4495–4506 (1998). CASPubMed Google Scholar
Schumacher, A., Faust, C. & Magnuson, T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature384, 648 (1996). ArticleCAS Google Scholar
Ng, J., Hart, C.M., Morgan, K. & Simon, J.A. A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC. Mol. Cell. Biol.20, 3069–3078 (2000). ArticleCAS Google Scholar
Pirrotta, V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell93, 333–336 (1998). ArticleCAS Google Scholar
Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell98, 37–46 (1999). ArticleCAS Google Scholar
van der Vlag, J. & Otte, A.P. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nature Genet.23, 474–478 (1999). ArticleCAS Google Scholar
Tie, F., Furuyama, T. & Harte, P.J. The Drosophila Polycomb Group proteins ESC and E(Z) bind directly to each other and co-localize at multiple chromosomal sites. Development125, 3483–3496 (1998). CASPubMed Google Scholar
Scott, I.C., Anson-Cartwright, L., Riley, P., Reda, D. & Cross, J.C. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol. Cell. Biol.20, 530–541 (2000). ArticleCAS Google Scholar
Eggan, K. et al. X-Chromosome inactivation in cloned mouse embryos. Science290, 1578–1581 (2000). ArticleCAS Google Scholar
Hadjantonakis, A.K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Non-invasive sexing of preimplantation stage mammalian embryos. Nature Genet.19, 220–222 (1998). ArticleCAS Google Scholar
Sewalt, R.G. et al. Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. Mol. Cell. Biol.18, 3586–3595 (1998). ArticleCAS Google Scholar
Struhl, G. & Akam, M. Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J.4, 3259–3264 (1985). ArticleCAS Google Scholar
Keohane, A.M., Lavender, J.S., O'Neill, L.P. & Turner, B.M. Histone acetylation and X inactivation. Dev. Genet.22, 65–73 (1998). ArticleCAS Google Scholar
Brown, C.J. & Willard, H.F. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature368, 154–156 (1994). ArticleCAS Google Scholar
Csankovszki, G., Panning, B., Bates, B., Pehrson, J.R. & Jaenisch, R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nature Genet.22, 323–324 (1999). ArticleCAS Google Scholar
Gilbert, S.L. & Sharp, P.A. Promoter-specific hypoacetylation of X-inactivated genes. Proc. Natl Acad. Sci. USA96, 13825–13830 (1999). ArticleCAS Google Scholar
Hansen, R.S., Canfield, T.K., Fjeld, A.D. & Gartler, S.M. Role of late replication timing in the silencing of X-linked genes. Hum. Mol. Genet.5, 1345–1353 (1996). ArticleCAS Google Scholar
O'Neill, L.P. et al. A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. EMBO J.18, 2897–2907 (1999). ArticleCAS Google Scholar
Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell5, 695–705 (2000). ArticleCAS Google Scholar
Migeon, B.R., Axelman, J. & Beggs, A.H. Effect of ageing on reactivation of the human X-linked HPRT locus. Nature335, 93–96 (1988). ArticleCAS Google Scholar
Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol.225, 294–303 (2000). ArticleCAS Google Scholar
Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet.24, 88–91 (2000). ArticleCAS Google Scholar
Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet.19, 187–191 (1998). ArticleCAS Google Scholar
Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). ArticleCAS Google Scholar
Tanaka, M. et al. Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation. Mech. Dev.87, 129–142 (1999). ArticleCAS Google Scholar
Rinchik, E.M. & Carpenter, D.A. N-ethyl-N-nitrosourea-induced prenatally lethal mutations define at least two complementation groups within the embryonic ectoderm development (eed) locus in mouse chromosome 7. Mamm. Genome4, 349–353 (1993). ArticleCAS Google Scholar