Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression (original) (raw)

References

  1. McMahon, S.B., Van Buskirk, H.A., Dugan, K.A., Copeland, T.D. & Cole, M.D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).
    Article CAS Google Scholar
  2. Saleh, A. et al. Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes. J. Biol. Chem. 273, 26559–26565 (1998).
    Article CAS Google Scholar
  3. Vassilev, A. et al. The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol. Cell 2, 869–875 (1998).
    Article CAS Google Scholar
  4. Grant, P.A., Schieltz, D., Pray-Grant, M.G., Yates, J.R. & Workman, J.L. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2, 863–867 (1998).
  5. McMahon, S.B., Wood, M.A. & Cole, M.D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).
    Article CAS Google Scholar
  6. Allard, S. et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18, 5108–5119 (1999).
    Article CAS Google Scholar
  7. Brown, C.E., Lechner, T., Howe, L. & Workman, J.L. The many HATs of transcription coactivators. Trends Biochem. Sci. 25, 15–19 (2000).
    Article CAS Google Scholar
  8. Chen, H., Tini, M. & Evans, R.M. HATs on and beyond chromatin. Curr. Opin. Cell. Biol. 13, 218–224 (2001).
    Article CAS Google Scholar
  9. Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995 (1995).
    Article CAS Google Scholar
  10. Lanni, J.S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055–1064 (1998).
    Article CAS Google Scholar
  11. Stewart, Z.A., Leach, S.D. & Pietenpol, J.A. p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol. Cell. Biol. 19, 205–215 (1999).
    Article CAS Google Scholar
  12. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).
    Article CAS Google Scholar
  13. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).
    Article CAS Google Scholar
  14. Xu, W. et al. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nature Genet. 26, 229–232 (2000).
    Article CAS Google Scholar
  15. Yamauchi, T. et al. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc. Natl. Acad. Sci. USA 97, 11303–11306 (2000).
    Article CAS Google Scholar
  16. Nigg, E.A. Cell division mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell. Biol. 2, 21–32 (2001).
    Article CAS Google Scholar
  17. Morgan, D.O. Regulation of the APC and the exit from mitosis. Nature Cell Biol. 1, E47–53 (1999).
    Article CAS Google Scholar
  18. Dobles, M., Liberal, V., Scott, M.L., Benezra, R. & Sorger, P.K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645 (2000).
    Article CAS Google Scholar
  19. Kalitsis, P., Earle, E., Fowler, K.J. & Choo KH. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev . 14, 2277–2282 (2000).
    Article CAS Google Scholar
  20. Hoyt, M.A., Totis, L. & Roberts, B.T.S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).
    Article CAS Google Scholar
  21. Cahill, D.P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).
    Article CAS Google Scholar
  22. Michel, L.S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).
    Article CAS Google Scholar
  23. Waldman, T., Lengauer, C., Kinzler, K.W. & Vogelstein, B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713–716 (1996).
    Article CAS Google Scholar
  24. Cross, S.M. et al. p53-dependent mouse spindle checkpoint. Science 267, 1353–1356 (1995).
    Article CAS Google Scholar
  25. Di Leonardo, A. et al. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 57, 1013–1019 (1997).
    CAS Google Scholar
  26. Krebs, J.E., Fry, C.J., Samuels, M.L. & Peterson, C.L. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 102, 587–598 (2000).
    Article CAS Google Scholar
  27. Megee, P.C., Morgan. B.A. & Smith, M.M. Histone H4 and the maintenance of genome integrity. Genes Dev . 9, 1716–1727 (1995).
    Article CAS Google Scholar
  28. Smith, E.R. et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Sci. USA 95, 3561–3565 (1998).
    Article CAS Google Scholar
  29. Clarke A.S., Lowell, J.E., Jacobson, S.J. & Pillus, L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol . 19, 2515–2526 (1999).
    Article CAS Google Scholar
  30. Cliby, W.A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998).
    Article CAS Google Scholar

Download references