Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia (original) (raw)

References

  1. Fink, J.K. et al. Hereditary spastic paraplegia: advances in genetic research. Neurology 46, 1507–1514 (1996).
    Article CAS Google Scholar
  2. Fink, J.K. & Hedera, P. Hereditary spastic paraplegia: genetic heterogeneity and genotype-phenotype correlation. Semin. Neurol. 19, 301–310 (1999).
    Article CAS Google Scholar
  3. Fink, J.K. Hereditary spastic paraplegia. In Emery,Rimoin's Principles and Practice of Medical Genetics Vol. 4 (eds Rimoin, D., Pyeritz, R., Connor, J. & Korf, B.) in press (Harcourt, London, 2001).
  4. Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet. 23, 296–303 (1999).
    Article CAS Google Scholar
  5. Rainier, S. et al. Hereditary spastic paraplegia linked to chromosome 14q11–q21: reduction of the SPG3 locus interval from 5.3 to 2.7 cM. J. Med. Genet. (in press) (2001).
  6. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).
    Article CAS Google Scholar
  7. Jouet, M. et al. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nature Genet. 7, 402–407 (1994).
    Article CAS Google Scholar
  8. Scheffzek, K., Reza, M. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257–262 (1998).
    Article CAS Google Scholar
  9. Prakash, B., Renault, L., Praefcke, G.J.K., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J. 19, 4555–4564 (2000).
    Article CAS Google Scholar
  10. Prakash, B., Praefcke, G.J.K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000).
    Article CAS Google Scholar
  11. Sever, S., Muhlberg, A.B. & Schmid, S.L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).
    Article CAS Google Scholar
  12. Schwemmle, M., Richter, M.F., Herrmann, C., Nassar, N. & Staeheli, P. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J. Biol. Chem. 270, 13518–13523 (1995).
    Article CAS Google Scholar
  13. McNiven, M.A., Cao, H., Pitts, K.R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places (Review). Trends Biochem. Sci. 25, 115–120 (2000).
    Article CAS Google Scholar
  14. Schmid, S.L., McNiven, M.A. & DeCamilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).
    Article CAS Google Scholar
  15. Urrutia, R., Henley, J.R., Cook, T. & McNiven, M.A. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc. Natl Acad. Sci. USA 94, 377–384 (1997).
    Article CAS Google Scholar
  16. Noda, Y., Nakata, T. & Hirokawa, N. Localization of dynamin: widespread distribution in mature neurons and association with membranous organelles. Neuroscience 55, 113–127 (1993).
    Article CAS Google Scholar
  17. Nicoziani, P. et al. Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose-6-phosphate receptor. Mol. Biol. Cell 11, 481–495 (2000).
    Article CAS Google Scholar
  18. Jones, S.M., Howell, K.E., Henley, J.R., Cao, H. & McNiven, M.A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).
    Article CAS Google Scholar
  19. Carroll, R.C. et al. Dynamin-dependent endocytosis of inotropic glutamate receptors. Proc. Natl Acad. Sci. USA 96, 14112–14117 (1999).
    Article CAS Google Scholar
  20. Della Rocca, G.J. et al. Serotonin 5-HT1A receptor–mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J. Biol. Chem. 274, 4749–4753 (1999).
    Article CAS Google Scholar
  21. Vogler, O. et al. Receptor subtype–specific regulation of muscarinic acetylcholine receptor sequestration by dynamin. Distinct sequestration of m2 receptors. J. Biol. Chem. 273, 12155–12160 (1998).
    Article CAS Google Scholar
  22. Zhang, Y., Moheban, D.B., Conway, B.R., Bhattacharyya, A. & Segal, R.A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).
    Article CAS Google Scholar
  23. Pitts, K.R., Yoon, Y., Krueger, E.W. & McNiven, M.A. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell 10, 4403–4417 (1999).
    Article CAS Google Scholar
  24. Ochoa, G.C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell. Biol. 150, 377–389 (2000).
    Article CAS Google Scholar
  25. Hedera, P. et al. Prenatal diagnosis of hereditary spastic paraplegia. Prenatal Diagnosis 21, 202–206 (2001).
    Article CAS Google Scholar
  26. Hedera, P., DiMauro, S., Bonilla, E., Wald, J.J. & Fink, J.K. Mitochondrial analysis in autosomal dominant hereditary spastic paraplegia. Neurology 55, 1591–1592 (2000).
    Article CAS Google Scholar
  27. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
    Article CAS Google Scholar
  28. Bairoch, A., Bucher, P. & Hofmann, K. The PROSITE database, its status in 1997. Nucleic Acids Res. 25, 217–221 (1997).
    Article CAS Google Scholar
  29. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. Biology 234, 779–815 (1993).
    CAS Google Scholar
  30. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).
    Article CAS Google Scholar

Download references