Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia (original) (raw)
References
Fink, J.K. et al. Hereditary spastic paraplegia: advances in genetic research. Neurology46, 1507–1514 (1996). ArticleCAS Google Scholar
Fink, J.K. & Hedera, P. Hereditary spastic paraplegia: genetic heterogeneity and genotype-phenotype correlation. Semin. Neurol.19, 301–310 (1999). ArticleCAS Google Scholar
Fink, J.K. Hereditary spastic paraplegia. In Emery,Rimoin's Principles and Practice of Medical Genetics Vol. 4 (eds Rimoin, D., Pyeritz, R., Connor, J. & Korf, B.) in press (Harcourt, London, 2001).
Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet.23, 296–303 (1999). ArticleCAS Google Scholar
Rainier, S. et al. Hereditary spastic paraplegia linked to chromosome 14q11–q21: reduction of the SPG3 locus interval from 5.3 to 2.7 cM. J. Med. Genet. (in press) (2001).
Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell93, 973–983 (1998). ArticleCAS Google Scholar
Jouet, M. et al. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nature Genet.7, 402–407 (1994). ArticleCAS Google Scholar
Scheffzek, K., Reza, M. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci.23, 257–262 (1998). ArticleCAS Google Scholar
Prakash, B., Renault, L., Praefcke, G.J.K., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J.19, 4555–4564 (2000). ArticleCAS Google Scholar
Prakash, B., Praefcke, G.J.K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature403, 567–571 (2000). ArticleCAS Google Scholar
Sever, S., Muhlberg, A.B. & Schmid, S.L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). ArticleCAS Google Scholar
Schwemmle, M., Richter, M.F., Herrmann, C., Nassar, N. & Staeheli, P. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J. Biol. Chem.270, 13518–13523 (1995). ArticleCAS Google Scholar
McNiven, M.A., Cao, H., Pitts, K.R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places (Review). Trends Biochem. Sci.25, 115–120 (2000). ArticleCAS Google Scholar
Schmid, S.L., McNiven, M.A. & DeCamilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol.10, 504–512 (1998). ArticleCAS Google Scholar
Urrutia, R., Henley, J.R., Cook, T. & McNiven, M.A. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc. Natl Acad. Sci. USA94, 377–384 (1997). ArticleCAS Google Scholar
Noda, Y., Nakata, T. & Hirokawa, N. Localization of dynamin: widespread distribution in mature neurons and association with membranous organelles. Neuroscience55, 113–127 (1993). ArticleCAS Google Scholar
Nicoziani, P. et al. Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose-6-phosphate receptor. Mol. Biol. Cell11, 481–495 (2000). ArticleCAS Google Scholar
Jones, S.M., Howell, K.E., Henley, J.R., Cao, H. & McNiven, M.A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science279, 573–577 (1998). ArticleCAS Google Scholar
Carroll, R.C. et al. Dynamin-dependent endocytosis of inotropic glutamate receptors. Proc. Natl Acad. Sci. USA96, 14112–14117 (1999). ArticleCAS Google Scholar
Della Rocca, G.J. et al. Serotonin 5-HT1A receptor–mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J. Biol. Chem.274, 4749–4753 (1999). ArticleCAS Google Scholar
Vogler, O. et al. Receptor subtype–specific regulation of muscarinic acetylcholine receptor sequestration by dynamin. Distinct sequestration of m2 receptors. J. Biol. Chem.273, 12155–12160 (1998). ArticleCAS Google Scholar
Zhang, Y., Moheban, D.B., Conway, B.R., Bhattacharyya, A. & Segal, R.A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci.20, 5671–5678 (2000). ArticleCAS Google Scholar
Pitts, K.R., Yoon, Y., Krueger, E.W. & McNiven, M.A. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell10, 4403–4417 (1999). ArticleCAS Google Scholar
Ochoa, G.C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell. Biol.150, 377–389 (2000). ArticleCAS Google Scholar
Hedera, P. et al. Prenatal diagnosis of hereditary spastic paraplegia. Prenatal Diagnosis21, 202–206 (2001). ArticleCAS Google Scholar
Hedera, P., DiMauro, S., Bonilla, E., Wald, J.J. & Fink, J.K. Mitochondrial analysis in autosomal dominant hereditary spastic paraplegia. Neurology55, 1591–1592 (2000). ArticleCAS Google Scholar
Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402 (1997). ArticleCAS Google Scholar
Bairoch, A., Bucher, P. & Hofmann, K. The PROSITE database, its status in 1997. Nucleic Acids Res.25, 217–221 (1997). ArticleCAS Google Scholar
Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. Biology234, 779–815 (1993). CAS Google Scholar
Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR8, 477–486 (1996). ArticleCAS Google Scholar