Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA (original) (raw)

References

  1. Hoeijmakers, J.H.J. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).
    Article CAS Google Scholar
  2. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).
    Article CAS Google Scholar
  3. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).
    Article CAS Google Scholar
  4. Simonsson, T. G-quadruplex DNA structures—variations on a theme. Biol. Chem. 382, 621–628 (2001).
    Article CAS Google Scholar
  5. Bork, P. & Koonin, E.V. An expanding family of helicases within the 'DEAD/H' superfamily. Nucleic Acids Res. 21, 751–752 (1993).
    Article CAS Google Scholar
  6. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
    CAS PubMed PubMed Central Google Scholar
  7. George, S.E., Simokat, K., Hardin, J. & Chisholm, A.D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 92, 633–643 (1998).
    Article CAS Google Scholar
  8. Wicky, C. et al. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 8983–8988 (1996).
    Article CAS Google Scholar
  9. Trinh, T.Q. & Sinden, R.R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352, 544–547 (1991).
    Article CAS Google Scholar
  10. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genet. 10, 213–218 (1995).
    Article CAS Google Scholar
  11. Hirst, M.C. & White, P.J. Cloned human FMR1 trinucleotide repeats exhibit a length- and orientation-dependent instability suggestive of in vivo lagging strand secondary structure. Nucleic Acids Res. 26, 2353–2358 (1998).
    Article CAS Google Scholar
  12. Rolfsmeier, M.L. et al. _Cis_-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae. Genetics 157, 1569–1579 (2001).
    CAS PubMed PubMed Central Google Scholar
  13. Balakumaran, B.S., Freudenreich, C.H. & Zakian, V.A. CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum. Mol. Genet. 9, 93–100 (2000).
    Article CAS Google Scholar
  14. Ahmed, S. & Hodgkin, J. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403, 159–164 (2000).
    Article CAS Google Scholar
  15. Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. & Hengartner, M.O. A conserved checkpoint pathway mediates DNA damage–induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5, 435–443 (2000).
    Article CAS Google Scholar
  16. Strand, M., Prolla, T.A., Liskay, R.M. & Petes, T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).
    Article CAS Google Scholar
  17. Degtyareva, N.P. et al. Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. Proc. Natl Acad. Sci. USA 99, 2158–2163 (2002).
    Article CAS Google Scholar
  18. Dalgaard, J.Z. & Klar, A.J. A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev. 15, 2060–2068 (2001).
    Article CAS Google Scholar
  19. Seydoux, G. & Schedl, T. The germline in C. elegans: origins, proliferation, and silencing. Int. Rev. Cytol. 203, 139–185 (2001).
    Article CAS Google Scholar
  20. Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell 6, 605–616 (2000).
    Article CAS Google Scholar
  21. Zetka, M.C. & Rose, A.M. Mutant rec-1 eliminates the meiotic pattern of crossing over in Caenorhabditis elegans. Genetics 141, 1339–1349 (1995).
    CAS PubMed PubMed Central Google Scholar
  22. Dempsey, L.A., Sun, H., Hanakahi, L.A. & Maizels, N. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D. A role for G-G pairing in immunoglobulin switch recombination. J. Biol. Chem. 274, 1066–1071 (1999).
    Article CAS Google Scholar
  23. Sun, H., Karow, J.K., Hickson, I.D. & Maizels, N. The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27587–27592 (1998).
    Article CAS Google Scholar
  24. Mohaghegh, P., Karow, J.K., Brosh, J.R. Jr, Bohr, V.A. & Hickson, I.D. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001).
    Article CAS Google Scholar
  25. Kamath-Loeb, A.S., Loeb, L.A., Johansson, E., Burgers, P.M. & Fry, M. Interactions between the Werner syndrome helicase and DNA polymerase δ specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J. Biol. Chem. 276, 16439–16446 (2001).
    Article CAS Google Scholar
  26. Cantor, S.B. et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105, 149–160 (2001).
    Article CAS Google Scholar
  27. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, research0002.1–research0002.10 (2000).
    Article Google Scholar
  28. Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).
    Article CAS Google Scholar

Download references