Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation (original) (raw)

References

  1. Keeling, R. F. & Garcia, H. E. The change in oceanic O2 inventory associated with recent global warming. Proc. Natl Acad. Sci. 99, 7848–7853 (2002).
    Article Google Scholar
  2. Gnanadesikan, A., Russell, J. L. & Zeng, F. How does ocean ventilation change under global warming? Ocean Sci. 3, 43–53 (2007).
    Article Google Scholar
  3. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).
    Article Google Scholar
  4. Emerson, S., Watanabe, Y. W., Ono, T. & Mecking, S. Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. J. Oceanogr. 60, 139–147 (2004).
    Article Google Scholar
  5. Ito, T. & Deutsch, C. A conceptual model for the temporal spectrum of oceanic oxygen variability. Geophys. Res. Lett. 37, L03601 (2010).
    Article Google Scholar
  6. Margo Project Members, Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosci. 2, 1–6 (2009).
    Google Scholar
  7. Muratli, J. M., Chase, Z., Mix, A. C. & McManus, J. Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water. Nature Geosci. 3, 23–26 (2010).
    Google Scholar
  8. Galbraith, E. D., Kienast, M., Pedersen, T. F. & Calvert, S. E. Glacial–interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography 19, PA4007 (2004).
    Article Google Scholar
  9. Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).
    Article Google Scholar
  10. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376, 755–758 (1995).
    Article Google Scholar
  11. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & François, R. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415, 156–159 (2002).
    Article Google Scholar
  12. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).
    Article Google Scholar
  13. Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–894 (2007).
    Article Google Scholar
  14. Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2009).
    Article Google Scholar
  15. Bradtmiller, L. I., Anderson, R. F., Sachs, J. P. & Fleisher, M. Q. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth Planet. Sci. Lett. 299, 417–425 (2010).
    Article Google Scholar
  16. Altabet, M. A. et al. The nitrogen biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res. I 46, 655–679 (1999).
    Article Google Scholar
  17. Baas, J. H., Schönfeld, J. & Zahn, R. Mid-depth oxygen drawdown during Heinrich events: Evidence from benthic foraminiferal community structure, trace-fossil tiering, and benthic _δ_13C at the Portuguese Margin. Mar. Geol. 152, 25–55 (1998).
    Article Google Scholar
  18. Crusius, J., Pedersen, T. F., Kienast, S. S., Keigwin, L. & Labeyrie, L. D. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling–Ållerød interval (14.7–12.9 kyr). Geology 32, 633–636 (2004).
    Article Google Scholar
  19. Cannariato, K. G. & Kennett, J. P. California margin oxygen-minimum zone during the past 60 k.y. Geology 27, 975–978 (1999).
    Article Google Scholar
  20. Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2 . J. Mar. Res. 63, 813–839 (2005).
    Article Google Scholar
  21. Martin, P., Archer, D. & Lea, D. W. Role of deep sea temperature in the carbon cycle during the last glacial. Paleoceanography 20, PA2015 (2005).
    Article Google Scholar
  22. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and _δ_18O of the Glacial Deep Ocean. Science 298, 1769–1773 (2002).
    Article Google Scholar
  23. Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise. Science 328, 1147–1152 (2010).
    Article Google Scholar
  24. Matsumoto, K. Biology-mediated temperature control on atmospheric _p_CO2 and ocean biogeochemistry. Geophys. Res. Lett. 34, L20605 (2007).
    Article Google Scholar
  25. Keigwin, L. D. & Lehman, S. J. Deep circulation change linked to HEINRICH event 1 and Younger Dryas in a middepth North Atlantic core. Paleoceanography 9, 185–194 (1994).
    Article Google Scholar
  26. Ivanochko, T. S. et al. Variations in tropical convection as an amplifier of global climate change at the millenial scale. Earth Planet. Sci. Lett. 235, 302–314 (2005).
    Article Google Scholar
  27. Schulz, H., von Rad, U. & Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 54–57 (1998).
    Article Google Scholar
  28. Altabet, M. A., François, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).
    Article Google Scholar
  29. Schmittner, A., Galbraith, E. D., Hostetler, S. W., Pedersen, T. F. & Zhang, R. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard–Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 22, PA3207 (2007).
    Article Google Scholar
  30. Kienast, M. et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846–849 (2006).
    Article Google Scholar
  31. Hayes, C. T., Anderson, R. F. & Fleisher, M. Q. Opal accumulation rates in the equatorial Pacific and mechanisms of deglaciation. Paleoceanography 26, PA1207 (2011).
    Article Google Scholar
  32. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, 1143–1448 (2009).
    Google Scholar
  33. Brunelle, B. G. et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat. Sci. Rev. 29, 2579–2590 (2010).
    Article Google Scholar
  34. Ortiz, J. D. et al. Enhanced marine productivity off western North America during warm climate intervals of the past 52 k.y. Geology 32, 521–524 (2004).
    Article Google Scholar
  35. Robinson, R. S., Martinez, P., Pena, L. D. & Cacho, I. Nitrogen isotopic evidence for deglacial changes in nutrient supply in the eastern equatorial Pacific. Paleoceanography 24, PA4213 (2009).
    Article Google Scholar
  36. Zheng, Y., van Geen, A., Anderson, R. F., Gardner, J. V. & Dean, W. E. Intensification of the northeast Pacific oxygen minimum zone during the Bölling–Alleröd warm period. Paleoceanography 15, 528–536 (2000).
    Article Google Scholar
  37. Barker, S., Knorr, G., Vautravers, M. J., Diz, P. & Skinner, L. C. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geosci. 3, 567–571 (2010).
    Article Google Scholar
  38. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).
    Article Google Scholar
  39. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
    Article Google Scholar
  40. Suthhof, A., Ittekkot, V. & Gaye-Haake, B. Millennial-scale oscillation of denitrification intensity in the Arabian Sea during the late Quaternary and its potential influence on atmospheric N2O and global climate. Glob. Biogeochem. Cycles 15, 637–649 (2001).
    Article Google Scholar
  41. Thunell, R. C. & Kepple, A. B. Glacial-Holocene _δ_15 N record from the Gulf of Tehuantepec, Mexico: Implications for denitrification in the eastern equatorial Pacific and changes in atmospheric N2O. Glob. Biogeochem. Cycles 18, GB1001 (2004).
    Google Scholar
  42. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).
    Article Google Scholar
  43. Marinov, I., Follows, M. J., Gnanadesikan, A., Sarmiento, J. L. & Slater, R. D. How does ocean biology affect atmospheric _p_CO2? Theory and models. J. Geophys. Res. 113, C07032 (2008).
    Article Google Scholar
  44. Jaccard, S. L. et al. Glacial/interglacial changes in subarctic North Pacific stratification. Science 308, 1003–1006 (2005).
    Article Google Scholar
  45. Marchitto, T. M., Lynch-Stieglitz, J. & Hemming, S. R. Deep Pacific CaCO3 compensation and glacial–interglacial atmospheric CO2 . Earth Planet. Sci. Lett. 231, 317–336 (2005).
    Article Google Scholar
  46. Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2 . Earth Planet. Sci. Lett. 286, 479–491 (2009).
    Article Google Scholar
  47. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000-800,000 year before present. Nature 453, 379–382 (2008).
    Article Google Scholar
  48. Schilt, A. et al. Atmospheric nitrous oxide during the past 140,000 years. Earth Planet. Sci. Lett. 29, 182–192 (2010).
    Google Scholar
  49. NGICP Project Members, High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).
    Article Google Scholar
  50. EPICA Project Members, Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).
    Article Google Scholar

Download references