The acceleration of oceanic denitrification during deglacial warming (original) (raw)

References

  1. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).
    Article Google Scholar
  2. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
    Article Google Scholar
  3. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376, 755–758 (1995).
    Article Google Scholar
  4. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).
    Article Google Scholar
  5. Schmittner, A., Oschlies, A., Matthews, H. D. & Galbraith, E. D. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob. Biogeochem. Cycl. 22, GB1013 (2008).
    Article Google Scholar
  6. Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).
    Article Google Scholar
  7. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).
    Article Google Scholar
  8. Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, PA4203 (2012).
    Article Google Scholar
  9. Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).
    Article Google Scholar
  10. Christensen, J. J., Murray, J. W., Devol, A. H. & Codispoti, L. A. Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Glob. Biogeochem. Cycl. 1, 97–116 (1987).
    Article Google Scholar
  11. Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N. & Haug, G. H. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycl. 18, GB4012 (2004).
    Article Google Scholar
  12. Altabet, M. A. et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res. I 46, 655–679 (1999).
    Article Google Scholar
  13. Tesdal, J., Galbraith, E. D. & Kienast, M. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences 10, 101–118 (2013).
    Article Google Scholar
  14. Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycl. 8, 103–116 (1994).
    Article Google Scholar
  15. Somes, C. J. et al. Simulating the global distribution of nitrogen isotopes in the ocean. Glob. Biogeochem. Cycl. 24, GB4019 (2010).
    Article Google Scholar
  16. McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744 (2007).
    Article Google Scholar
  17. Robinson, R. S. et al. Diatom-bound N-15/N-14: New support for enhanced nutrient consumption in the ice age subantarctic. Paleoceanography 20, PA3003 (2005).
    Article Google Scholar
  18. Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).
    Article Google Scholar
  19. Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E. & Emeis, K. C. Influence of diagenesis on sedimentary delta(15)N in the Arabian Sea over the last 130 kyr. Mar. Geol. 284, 127–138 (2011).
    Article Google Scholar
  20. Sherwood, O. A., Lehmann, M. F., Schubert, C. J., Scott, D. B. & McCarthy, M. D. Nutrient regime shift in the western North Atlantic indicated by compound-specific delta(15)N of deep-sea gorgonian corals. Proc. Natl Acad. Sci. USA 108, 1011–1015 (2011).
    Article Google Scholar
  21. Higgins, M. B., Robinson, R. S., Carter, S. J. & Pearson, A. Evidence from chlorin nitrogen isotopes for alternating nutrient regimes in the Eastern Mediterranean Sea. Earth Planet. Sci. Lett. 290, 102–107 (2010).
    Article Google Scholar
  22. Brunelle, B. G. et al. Evidence from diatom-bound nitrogen isotopes for Subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography 22, PA1215 (2007).
    Article Google Scholar
  23. Horn, M. G., Robinson, R. S., Rynearson, T. A. & Sigman, D. M. Nitrogen isotopic relationship between diatom-bound and bulk organic matter of cultured polar diatoms. Paleoceanography 26, PA3208 (2011).
    Article Google Scholar
  24. Pride, C. et al. Nitrogen isotopic variations in the Gulf of California since the last deglaciation: Response to global climate change. Paleoceanography 14, 397–409 (1999).
    Article Google Scholar
  25. Emmer, E. & Thunell, R. C. Nitrogen isotope variations in Santa Barbara Basin sediments: Implications for denitrification in the eastern tropical North Pacific during the last 50,000 years. Paleoceanography 15, 377–387 (2000).
    Article Google Scholar
  26. Suthhof, A., Ittekkot, V. & Gaye-Haake, B. Millennial-scale oscillation of denitrification intensity in the Arabian Sea during the late Quaternary and its potential influence on atmospheric N2O and global climate. Glob. Biogeochem. Cycl. 15, 637–649 (2001).
    Article Google Scholar
  27. Hendy, I. L. & Pedersen, T. F. Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation. Geophys. Res. Lett. 33, L20602 (2006).
    Article Google Scholar
  28. De Pol-Holz, R. et al. Melting of the Patagonian Ice Sheet and deglacial perturbations of the nitrogen cycle in the eastern South Pacific. Geophys. Res. Lett. 33, L04704 (2006).
    Article Google Scholar
  29. Robinson, R., Mix, A. & Martinez, P. Southern Ocean control on the extent of denitrification in the southeast Pacific over the last 70 ky. Quat. Sci. Rev. 26, 201–212 (2007).
    Article Google Scholar
  30. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciataion. Nature Geosci. 5, 151–156 (2012).
    Article Google Scholar
  31. Muratli, J. M., Chase, Z., Mix, A. C. & McManus, J. Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water. Nature Geosci. 3, 23–26 (2010).
    Article Google Scholar
  32. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).
    Article Google Scholar
  33. Kienast, M. et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846–849 (2006).
    Article Google Scholar
  34. Martinez, P. & Robinson, R. S. Increase in water column denitrification during the last deglaciation: The influence of oxygen demand in the eastern equatorial Pacific. Biogeosciences 7, 1–9 (2010).
    Article Google Scholar
  35. Brandes, J. A. & Devol, A. H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Glob. Biogeochem. Cycl. 16, 1120 (2002).
    Article Google Scholar
  36. Kienast, M. Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography 15, 244–253 (2000).
    Article Google Scholar
  37. Bianchi, D., Dunne, J. P., Sarmiento, J. L. & Galbraith, E. D. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2 . Glob. Biogeochem. Cycl. 26, GB2009 (2012).
    Article Google Scholar
  38. Middelburg, J. J., Soetaert, K., Herman, P. M. J. & Heip, C. H. R. Denitrification in marine sediments: A model study. Glob. Biogeochem. Cycl. 10, 661–673 (1996).
    Article Google Scholar
  39. Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).
    Article Google Scholar
  40. Oka, A., Abe-Ouchi, A., Chikamoto, M. O. & Ide, T. Mechanisms controlling export production at the LGM: Effects of changes in oceanic physical fields and atmospheric dust deposition. Global Biochemical Cycles 25, GB2009 (2011).
    Article Google Scholar
  41. Kohfeld, K., Le Quéré, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial–interglacial CO2 cycles. Science 308, 74–78 (2005).
    Article Google Scholar
  42. Altabet, M. A. Constraints on oceanic N balance/imbalance from sedimentary 15N records. Biogeosciences 4, 75–86 (2007).
    Article Google Scholar
  43. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).
    Article Google Scholar
  44. Hutchins, D. A. et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 52, 1293–1304 (2007).
    Article Google Scholar
  45. Eugster, O., Gruber, N., Deutsch, C., Jaccard, S. L. & Payne, M. R. The dynamics of the marine nitrogen cycle across the last deglaciation. Paleoceanography 28, 1–14 (2013).
    Article Google Scholar
  46. Lehmann, M. F. et al. The distribution of nitrate 15N/14N in marine sediments and the impact of benthic nitrogen loss on the isotopic composition of oceanic nitrate. Geochim. Cosmochim. Acta 71, 5384–5404 (2007).
    Article Google Scholar
  47. Lehmann, M. F., Sigman, D. M. & Berelson, W. M. Coupling the 15N/14N and 18O/ 16O of nitrate as a constraint on benthic nitrogen cycling. Mar. Chem. 88, 1–20 (2004).
    Article Google Scholar
  48. Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycl. 21, GB4006 (2007).
    Article Google Scholar
  49. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–55 (2012).
    Article Google Scholar

Download references

Acknowledgements

Support for the Nitrogen Cycle in the Oceans Past and Present (NICOPP) working group meetings was provided by PAGES, IMAGES and GEOTOP. E.D.G., D.B. and M.K. are supported by the Canadian Institute for Advanced Research (CIFAR).

Author information

Authors and Affiliations

  1. Department of Earth and Planetary Science, McGill University, 3450 University Street, Montreal, Quebec H3A 2A7, Canada
    Eric D. Galbraith & Daniele Bianchi
  2. Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, PO Box 15000, Canada
    Markus Kienast, Stephanie Kienast & Christopher Somes
  3. Departamento de Geoquı´mica, Instituto de Quı´mica, Universidade Federal Fluminense, Rio de Janeiro 24.020-015, Brazil
    Ana Luiza Albuquerque
  4. School for Marine Science and Technology, U Massachusetts Dartmouth, 706 Rodney French Blvd, New Bedford, Massachusetts 02744-1221, USA
    Mark A. Altabet
  5. Ocean Sciences Deptartment, University of California, Santa Cruz 95064, USA
    Fabian Batista & Matthew McCarthy
  6. Department of Earth Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, British Columbia, V6T 1Z4, Canada
    Stephen E. Calvert, Roger Francois & Tara Ivanochko
  7. Large Lakes Observatory, University of Minnesota Duluth, 2205 E. 5th Street, Research Laboratory Building 205, Duluth, Minnesota 55812, USA
    Sergio Contreras
  8. Université Bordeaux 1, UMR CNRS 5805 EPOC, Avenue des facultés, 33405 Talence cedex, France
    Xavier Crosta & Philippe Martinez
  9. Department of Oceanography, Center for Climate and Resilience Research (CR)2, Universidad de Concepción, Casilla 160-C, Concepcion 4070386, Chile
    Ricardo De Pol-Holz
  10. Woods Hole Oceanographic Institution, Clark 120A, MS #23, Woods Hole, Massachusetts 02543, USA
    Nathalie Dubois
  11. UMR 7159 LOCEAN, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, 4 Place Jussieu, Boite 100, 75252 Paris Cedex 05, France
    Johan Etourneau
  12. Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Taipei, Taiwan 115, R.O.C.
    Ting-Chang Hsu
  13. Geological Institute, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich, Switzerland
    Samuel L. Jaccard, Anna Nele Meckler & Anja S. Studer
  14. Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan
    Shuh-Ji Kao
  15. PAGES International Project Office, Zähringerstrasse 25, 3012 Bern, Switzerland
    Thorsten Kiefer
  16. Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, CH-4056 Basel, Switzerland
    Moritz F. Lehmann
  17. College of Earth, Oceanic, & Atmospheric Sciences, Oregon State University, CEOAS Administration Building 104, Corvallis, Oregon 97331-5503, USA
    Alan Mix & Andreas Schmittner
  18. Institute for Biogeochemistry and Marine Chemistry, Hamburg University, Bundesstrasse 55, 20146 Hamburg, Germany
    Jürgen Möbius
  19. Pacific Institute for Climate Solutions, University of Victoria, British Columbia, V8W 2Y2, PO Box 1700 STN CSC, Victoria, Canada
    Tom F. Pedersen
  20. School of Geosciences, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, Scotland, UK
    Laetitia Pichevin
  21. Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research Center, Stillwater, Oklahoma 74074, USA
    Tracy M. Quan
  22. Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island 02882, USA
    Rebecca S. Robinson
  23. GEOMAR Helmholtz-Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
    Evgeniya Ryabenko
  24. Institut fuer Geowissenschaften, Christian-Albrechts-Universitaet zu Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
    Ralph Schneider
  25. Department of Geological and Environmental Sciences, Stanford University, 367 Panama Street, Stanford, California 94305, USA
    Aya Schneider-Mor
  26. Faculty of Environmental Earth Science, Hokkaido University, Sapporo 0600810, Japan
    Masahito Shigemitsu
  27. Institute of Marine and Coastal Sciences, Rutgers University, Newark, 71 Dudley Road, New Brunswick, New Jersey 08901-8525, USA
    Dan Sinclair
  28. School of Earth and Ocean Sciences, University of Victoria, 3800 Finnerty Road (Ring Road), Victoria, British Columbia, V8W 2Y2, PO Box 1700 Station CSC, Canada
    Jan-Erik Tesdal
  29. Department of Earth and Ocean Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
    Robert Thunell
  30. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
    Jin-Yu Terence Yang

Authors

  1. Eric D. Galbraith
    You can also search for this author inPubMed Google Scholar
  2. Markus Kienast
    You can also search for this author inPubMed Google Scholar

Consortia

The NICOPP working group members

Contributions

M.K., T.K. and E.D.G. initiated and led the NICOPP working group. J-E.T., E.D.G. and M.K. assembled the database. D.B. made the δ15N-province, benthic denitrification and box model calculations. C.S. ran the UVic biogeochemical model simulations. E.D.G. wrote the manuscript with contributions from M.K. All coauthors participated in discussions at the working group meetings and edited the manuscript, and/or contributed previously unpublished data.

Corresponding author

Correspondence toEric D. Galbraith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Galbraith, E., Kienast, M. & The NICOPP working group members. The acceleration of oceanic denitrification during deglacial warming.Nature Geosci 6, 579–584 (2013). https://doi.org/10.1038/ngeo1832

Download citation