Goodwin, R.G. et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol.23, 2631–2641 (1993). ArticleCASPubMed Google Scholar
Schwarz, H. Biological activities of reverse signal transduction through CD137 ligand. J. Leukoc. Biol.77, 281–286 (2005). ArticleCASPubMed Google Scholar
Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol.3, 609–620 (2003). ArticleCASPubMed Google Scholar
Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol.23, 23–68 (2005). ArticleCASPubMed Google Scholar
Tan, J.T., Whitmire, J.K., Ahmed, R., Pearson, T.C. & Larsen, C.P. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J. Immunol.163, 4859–4868 (1999). CASPubMed Google Scholar
Bertram, E.M., Lau, P. & Watts, T.H. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J. Immunol.168, 3777–3785 (2002). ArticleCASPubMed Google Scholar
Kwon, B.S. et al. Immune responses in 4-1BB (CD137)-deficient mice. J. Immunol.168, 5483–5490 (2002). ArticleCASPubMed Google Scholar
Lee, S.W., Vella, A.T., Kwon, B.S. & Croft, M. Enhanced CD4 T cell responsiveness in the absence of 4-1BB. J. Immunol.174, 6803–6808 (2005). ArticleCASPubMed Google Scholar
Lee, S.W. et al. Functional dichotomy between OX40 and 4-1BB in modulating effector CD8 T cell responses. J. Immunol.177, 4464–4472 (2006). ArticleCASPubMed Google Scholar
Vinay, D.S., Cha, K. & Kwon, B.S. Dual immunoregulatory pathways of 4-1BB signaling. J. Mol. Med.84, 726–736 (2006). ArticleCASPubMed Google Scholar
Wilcox, R.A., Tamada, K., Strome, S.E. & Chen, L. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J. Immunol.169, 4230–4236 (2002). ArticleCASPubMed Google Scholar
Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science294, 870–875 (2001). ArticleCASPubMed Google Scholar
Wilcox, R.A. et al. Cutting edge: expression of functional CD137 receptor by dendritic cells. J. Immunol.168, 4262–4267 (2002). ArticleCASPubMed Google Scholar
Futagawa, T. et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int. Immunol.14, 275–286 (2002). ArticleCASPubMed Google Scholar
Lee, S.C. et al. 4-1BB (CD137) is required for rapid clearance of Listeria monocytogenes infection. Infect. Immun.73, 5144–5151 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nishimoto, H. et al. Costimulation of mast cells by 4-1BB, a member of the tumor necrosis factor receptor superfamily, with the high-affinity IgE receptor. Blood106, 4241–4248 (2005). ArticleCASPubMedPubMed Central Google Scholar
DeBenedette, M.A. et al. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J. Immunol.163, 4833–4841 (1999). CASPubMed Google Scholar
Zhu, G. et al. Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Eα)-transgenic mice. J. Immunol.167, 2671–2676 (2001). ArticleCASPubMed Google Scholar
Iwasaki, H. & Akashi, K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity26, 726–740 (2007). ArticleCASPubMed Google Scholar
Laiosa, C.V., Stadtfeld, M. & Graf, T. Determinants of lymphoid-myeloid lineage diversification. Annu. Rev. Immunol.24, 705–738 (2006). ArticleCASPubMed Google Scholar
Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol.21, 759–806 (2003). ArticleCASPubMed Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). ArticleCASPubMed Google Scholar
Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell118, 477–491 (2004). ArticleCASPubMed Google Scholar
Chen, C.C., Grimbaldeston, M.A., Tsai, M., Weissman, I.L. & Galli, S.J. Identification of mast cell progenitors in adult mice. Proc. Natl. Acad. Sci. USA102, 11408–11413 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shuford, W.W. et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med.186, 47–55 (1997). ArticleCASPubMedPubMed Central Google Scholar
Saito, K. et al. Infection-induced up-regulation of the costimulatory molecule 4-1BB in osteoblastic cells and its inhibitory effect on M-CSF/RANKL-induced in vitro osteoclastogenesis. J. Biol. Chem.279, 13555–13563 (2004). ArticleCASPubMed Google Scholar
Shin, H.H., Lee, E.A., Kim, S.J., Kwon, B.S. & Choi, H.S. A signal through 4-1BB ligand inhibits receptor for activation of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis by increasing interferon (IFN)-β production. FEBS Lett.580, 1601–1606 (2006). ArticleCASPubMed Google Scholar
Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19, 71–82 (2003). ArticleCASPubMed Google Scholar
Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol.2, 151–161 (2002). ArticleCASPubMed Google Scholar
Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol.7, 19–30 (2007). ArticleCASPubMed Google Scholar
Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol.7, 663–671 (2006). ArticleCASPubMed Google Scholar
van Rijt, L.S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med.201, 981–991 (2005). ArticleCASPubMedPubMed Central Google Scholar
de Heer, H.J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med.200, 89–98 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nikolic, T., de Bruijn, M.F., Lutz, M.B. & Leenen, P.J. Developmental stages of myeloid dendritic cells in mouse bone marrow. Int. Immunol.15, 515–524 (2003). ArticleCASPubMed Google Scholar
Steptoe, R.J., Ritchie, J.M. & Harrison, L.C. Increased generation of dendritic cells from myeloid progenitors in autoimmune-prone nonobese diabetic mice. J. Immunol.168, 5032–5041 (2002). ArticleCASPubMed Google Scholar
Shin, H.H., Lee, J.E. & Choi, H.S. Absence of 4-1BB increases cell influx into the peritoneal cavity in response to LPS stimulation by decreasing macrophage IL-10 levels. FEBS Lett.581, 4355–4360 (2007). ArticleCASPubMed Google Scholar
Schwarz, H., Blanco, F.J., von Kempis, J., Valbracht, J. & Lotz, M. ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood87, 2839–2845 (1996). CASPubMed Google Scholar
Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science311, 83–87 (2006). ArticleCASPubMed Google Scholar
D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med.198, 293–303 (2003). ArticleCASPubMedPubMed Central Google Scholar
Landsman, L., Varol, C. & Jung, S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol.178, 2000–2007 (2007). ArticleCASPubMed Google Scholar
Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity26, 519–531 (2007). ArticleCASPubMed Google Scholar
Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176, 1693–1702 (1992). ArticleCASPubMed Google Scholar
Wiesmann, A. et al. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity12, 193–199 (2000). ArticleCASPubMed Google Scholar
Nolte, M.A. et al. Immune activation modulates hematopoiesis through interactions between CD27 and CD70. Nat. Immunol.6, 412–418 (2005). ArticleCASPubMed Google Scholar
Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity22, 439–450 (2005). ArticleCASPubMed Google Scholar