Proteolysis of NF-κB1 p105 is essential for T cell antigen receptor–induced proliferation (original) (raw)
Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol.2, 725–734 (2002). ArticleCASPubMed Google Scholar
Siebenlist, U., Franzoso, G. & Brown, K. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol.10, 405–455 (1994). ArticleCASPubMed Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). ArticleCASPubMed Google Scholar
Orian, A. et al. Structural motifs involves in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol.19, 3664–3673 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lang, V. βTrCP-mediated proteolysis of NF-κB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol. Cell. Biol.23, 402–413 (2003). ArticleCASPubMedPubMed Central Google Scholar
Heissmeyer, V., Krappmann, D., Hatada, E.N. & Scheidereit, C. Shared pathways of Iκβ kinase-induced SCFβTrCP-mediated ubiquitination and degradation for the NF-κB precursor p105 and IκBα. Mol. Cell. Biol.21, 1024–1035 (2001). ArticleCASPubMedPubMed Central Google Scholar
Salmeron, A. et al. Direct phosphorylation of NF-κB p105 by the IκB kinase complex on serine 927 is essential for signal-induced p105 proteolysis. J. Biol. Chem.276, 22215–22222 (2001). ArticleCASPubMed Google Scholar
Beinke, S. et al. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol.24, 9658–9667 (2004). ArticleCASPubMedPubMed Central Google Scholar
Waterfield, M., Jin, W., Reiley, W., Zhang, M.Y. & Sun, S.-C. IKKβ is an essential component of the TPL-2 signaling pathway. Mol. Cell. Biol.24, 6040–6048 (2004). ArticleCASPubMedPubMed Central Google Scholar
Symons, A., Beinke, S. & Ley, S.C. MAP kinase kinase kinases and innate immunity. Trends Immunol.27, 40–48 (2006). ArticleCASPubMed Google Scholar
Schmidt-Supprian, M. et al. Differential dependence of CD4+ CD25+ regulatory and natural killer-like T cells on signals leading to NF-κB activation. Proc. Natl. Acad. Sci. USA101, 4566–4571 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schmidt-Supprian, M. et al. Mature T cells depend on signaling through the IKK complex. Immunity19, 377–389 (2003). ArticleCASPubMed Google Scholar
Lo, J.C. et al. Coordination between NF-κB family members p50 and p52 is essential for mediating LTβR signals in the development and organization of secondary lymphoid tissues. Blood107, 1048–1055 (2006). ArticleCASPubMedPubMed Central Google Scholar
Fontenot, J. & Rudensky, A.Y. A well adapted reguatory contrivance: regulatory T cell development and the forkhead family of transcription factor Foxp3. Nat. Immunol.6, 331–337 (2005). ArticleCASPubMed Google Scholar
Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med.191, 1895–1903 (2000). ArticleCASPubMedPubMed Central Google Scholar
Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol.4, 835–842 (2004). Article Google Scholar
Burchill, M.A., Yang, J., Vang, K.B. & Farrar, M.A. Interleukin-2 receptor signaling in regulatory T cell development and homeostasis. Immunol. Lett.114, 1–8 (2007). ArticleCASPubMedPubMed Central Google Scholar
Algarté, M. et al. In vivo regulation of interleukin-2 receptor α gene transcription by the coordinated binding of constitutive and inducible factors in human primary T cells. EMBO J.14, 5060–5072 (1995). ArticlePubMedPubMed Central Google Scholar
Dumitru, C.D. et al. TNFα induction by LPS is regulated post-transcriptionally via a TPL2/ERK-dependent pathway. Cell103, 1071–1083 (2000). ArticleCASPubMed Google Scholar
Lang, V. et al. ABIN-2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol. Cell. Biol.24, 5235–5248 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, H. et al. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p) 105 precursor (NF-κB1) but expressing p50. J. Exp. Med.187, 985–996 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mercurio, F., DiDonato, J.A., Rosette, C. & Karin, M. p105 and p98 precursor proteins play an active role in NF-κB-mediated signal transduction. Genes Dev.7, 705–718 (1993). ArticleCASPubMed Google Scholar
Rice, N.R., MacKichan, M.L. & Israel, A. The precursor of NF-κB p50 has IκB-like functions. Cell71, 243–253 (1992). ArticleCASPubMed Google Scholar
Liou, H.-C., Nolan, G.P., Ghosh, S., Fujita, T. & Baltimore, D. The NF-κB p50 precursor, p105, contains an internal IκB-like inhibitor that preferentially inhibits p50. EMBO J.11, 3003–3009 (1992). ArticleCASPubMedPubMed Central Google Scholar
Moorthy, A.K. & Ghosh, G. p105 IκBγ and prototypical IκBs use a similar mechanism to bind but a different mechanism to regulate the subcellular localization of NF-κB. J. Biol. Chem.278, 556–566 (2003). ArticleCASPubMed Google Scholar
Naumann, M., Wulczyn, F.G. & Scheidereit, C. The NF-κB precursor p105 and the proto-oncogene product Bcl-3 are IκB molecules and control nuclear translocation of NF-κB. EMBO J.12, 213–222 (1993). ArticleCASPubMedPubMed Central Google Scholar
Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.-F. & Verma, I.M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science284, 321–325 (1999). ArticleCASPubMed Google Scholar
Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev.14, 854–862 (2000). CASPubMedPubMed Central Google Scholar
Senftleben, U. et al. Activation by IKKα of a second evolutionary conserved, NF-κB signaling pathway. Science293, 1495–1499 (2001). ArticleCASPubMed Google Scholar
Kayagaki, N. et al. BAFF/BLys receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity17, 515–524 (2002). ArticleCASPubMed Google Scholar
Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med.186, 1269–1275 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kontgen, F. et al. Mice lacking the c-Rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity and interleukin-2 expression. Genes Dev.9, 1965–1977 (1995). ArticleCASPubMed Google Scholar
Mora, A.L., Youn, J., Keegan, A.D. & Boothby, M. NF-κB/Rel participation in the lymphokine-dependent proliferation of T lymphoid cells. J. Immunol.166, 2218–2227 (2001). ArticleCASPubMed Google Scholar
Greve, B. et al. IκB kinase 2/β deficiency controls expansion of autoreactive T cells and suppress experimental autoimmune encephalomyelitis. J. Immunol.179, 179–185 (2007). ArticleCASPubMed Google Scholar
Schmidt-Supprian, M. et al. IκB kinase 2 deficiency in T cells leads to defects in priming, B cell help, germinal center reactions, and homeostatic expansion. J. Immunol.173, 1612–1619 (2004). ArticleCASPubMed Google Scholar
Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell104, 33–42 (2001). ArticleCASPubMed Google Scholar
Zheng, Y., Vig, M., Lyons, J., van Parijs, L. & Beg, A.A. Combined deficiency of p50 and cRel in CD4+ T cells reveals an essential requirement for nuclear factor κB in regulating mature T cell survival and in vivo function. J. Exp. Med.197, 861–874 (2003). ArticleCASPubMedPubMed Central Google Scholar
Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R. & Farrar, M.A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory cells. J. Immunol.178, 280–290 (2007). ArticleCASPubMed Google Scholar
Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol.6, 152–162 (2005). ArticleCASPubMed Google Scholar
Dooms, H., Wolslegel, K., Lin, P. & Abbas, A.K. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7Rα-expressing cells. J. Exp. Med.204, 547–557 (2007). ArticleCASPubMedPubMed Central Google Scholar
Papoutsopoulou, S. et al. ABIN-2 is required for optimal activation of the TPL-2/Erk MAP kinase pathway in innate immune responses. Nat. Immunol.7, 606–615 (2006). ArticleCASPubMed Google Scholar
Heissmeyer, V., Krappmann, D., Wulczyn, F.G. & Scheidereit, C. NF-κB p105 is a target on IκB kinases and controls signal induction of BCL-3-p50 complexes. EMBO J.18, 4766–4788 (1999). ArticleCASPubMedPubMed Central Google Scholar