Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ.10, 45–65 (2003). ArticleCAS Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). ArticleCASPubMed Central Google Scholar
Beyaert, R., Heyninck, K. & van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol.60, 1143–1151 (2000). ArticleCAS Google Scholar
Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol.5, 1052–1060 (2004). ArticleCAS Google Scholar
Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science289, 2350–2354 (2000). ArticleCASPubMed Central Google Scholar
van Huffel, S., Delaei, F., Heyninck, K., de Valck, D. & Beyaert, R. Identification of a novel A20-binding inhibitor of nuclear factor-κB activation termed ABIN-2. J. Biol. Chem.276, 30216–30223 (2001). ArticleCAS Google Scholar
Hughes, D.P., Marron, M.B. & Brindle, N.P. The anti-inflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-κB inhibitor ABIN-2. Circ. Res.92, 630–636 (2003). ArticleCAS Google Scholar
Sun, L. & Chen, Z.J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol.16, 119–120 (2004). ArticleCAS Google Scholar
Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature430, 694–699 (2004). ArticleCAS Google Scholar
Lang, V. et al. ABIN2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol. Cell. Biol.24, 5235–5248 (2004). ArticleCASPubMed Central Google Scholar
Patriotis, C., Makris, A., Bear, S.E. & Tsichlis, P.N. Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T cell lymphomas and in T cell activation. Proc. Natl. Acad. Sci. USA90, 2251–2255 (1993). ArticleCAS Google Scholar
Miyoshi, J., Higashi, T., Mukai, H., Ohuchi, T. & Kakunaga, T. Structure and transforming potential of the human cot oncogene encoding a putative protein kinase. Mol. Cell. Biol.11, 4088–4096 (1991). ArticleCASPubMed Central Google Scholar
Dumitru, C.D. et al. TNFα induction by LPS is regulated post-transcriptionally via a TPL2/Erk-dependent pathway. Cell103, 1071–1083 (2000). ArticleCAS Google Scholar
Eliopoulos, A.G., Wang, C.C., Dumitru, C.D. & Tsichlis, P.N. TPL-2 transduces CD40 and TNF signals that activate Erk and regulates IgE induction by CD40. EMBO J.22, 3855–3864 (2003). ArticleCASPubMed Central Google Scholar
Salmeron, A. et al. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J.15, 817–826 (1996). ArticleCASPubMed Central Google Scholar
O'Gorman, S., Dagenais, N.A., Qian, M. & Marchuk, Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. USA94, 14602–14607 (1997). ArticleCAS Google Scholar
Chen, L.F. & Greene, W.C. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol.5, 392–401 (2004). ArticleCAS Google Scholar
Sun, S.C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science259, 1912–1915 (1993). ArticleCAS Google Scholar
Baeuerle, P.A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol.12, 141–179 (1994). ArticleCASPubMed Central Google Scholar
Krappmann, D. et al. The IκB kinase complex and NF-κB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol. Cell. Biol.24, 6488–6500 (2004). ArticleCASPubMed Central Google Scholar
Sugimoto, K. et al. A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA-induced IL-12 production and Th cell differentiation. J. Clin. Invest.114, 857–866 (2004). ArticleCASPubMed Central Google Scholar
Aoki, M. et al. The human cot proto-oncogene encodes two protein serine/threonine kinases with different transforming activities by alternative initiation of translation. J. Biol. Chem.268, 22723–22732 (1993). CASPubMed Google Scholar
Belich, M.P., Salmeron, A., Johnston, L.H. & Ley, S.C. TPL-2 kinase regulates the proteolysis of the NF-κB inhibitory protein NF-κB1 p105. Nature397, 363–368 (1999). ArticleCAS Google Scholar
Hsu, H.Y. & Wen, M.H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem.277, 22131–22139 (2002). ArticleCAS Google Scholar
Eliopoulos, A.G., Dumitru, C.D., Wang, C.-C., Cho, J. & Tsichlis, P.N. Induction of COX-2 by LPS in macrophages is regulated by TPL2-dependent CREB activation signals. EMBO J.21, 4831–4840 (2002). ArticleCAS Google Scholar
Waterfield, M.R., Zhang, M., Norman, L.P. & Sun, S.-C. NF-κB1 / p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the TPL-2 kinase. Mol. Cell11, 685–694 (2003). ArticleCASPubMed Central Google Scholar
Guha, M. et al. Lipopolysaccharide activation of the MEK-Erk1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor α expression by inducing Elk-1 phosphorylation and Egr-a expression. Blood98, 1429–1439 (2001). ArticleCAS Google Scholar
Heyninck, K., Kreike, M.M. & Beyaert, R. Structure-function analysis of the A20-binding inhibitor of NF-κB activation, ABIN-1. FEBS Lett.536, 135–140 (2003). ArticleCAS Google Scholar
Zhang, S.Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity12, 301–311 (2000). ArticleCAS Google Scholar
Heyninck, K. et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J. Cell Biol.145, 1471–1482 (1999). ArticleCASPubMed Central Google Scholar
Bouwmeester, T. et al. A physical and functional map of the human TNFα/NF-κB signal transduction pathway. Nat. Cell Biol.6, 97–105 (2004). ArticleCAS Google Scholar
Beinke, S. et al. Lipopolysaccharide activation of the TPL-2/MEK/Extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol.24, 9658–9667 (2004). ArticleCASPubMed Central Google Scholar
Brummer, T., Shaw, P.E., Reth, M. & Misawa, Y. Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signalling. EMBO J.21, 5611–5622 (2002). ArticleCASPubMed Central Google Scholar
Sato, S. et al. Essential function of the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol.6, 1087–1095 (2005). ArticleCAS Google Scholar
Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol.17, 5598–5611 (1997). ArticleCASPubMed Central Google Scholar
Jorritsma, P.J., Brogdon, J.L. & Bottomly, K. Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4+ T cells. J. Immunol.170, 2427–2434 (2003). ArticleCAS Google Scholar
Salmeron, A. et al. Direct phosphorylation of NF-κB p105 by the IκB kinase complex on serine 927 is essential for signal-induced p105 proteolysis. J. Biol. Chem.276, 22215–22222 (2001). ArticleCAS Google Scholar
Warren, M.K. & Vogel, S.N. Bone marrow-derived macrophages: development and regulation of differentiation markers by colony-stimulating factor and interferons. J. Immunol.134, 982–989 (1985). CASPubMed Google Scholar
Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther.7, 1063–1066 (2000). ArticleCAS Google Scholar
Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol.161, 3822–3826.
Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176, 1693–1702 (1992). ArticleCAS Google Scholar
Lang, V. et al. βTrCP-mediated proteolysis of NF-κB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol. Cell. Biol.23, 402–413 (2003). ArticleCASPubMed Central Google Scholar
Beinke, S., Belich, M.P. & Ley, S.C. The death domain of NF-κB1 p105 is essential for signal-induced p105 proteolysis. J. Biol. Chem.277, 24162–24168 (2002). ArticleCAS Google Scholar
Alkalay, I. et al. In vivo stimulation of IκB phosphorylation is not sufficient to activate NF-κB. Mol. Cell. Biol.15, 1294–1301 (1995). ArticleCASPubMed Central Google Scholar
Zheng, Y., Vig, M., Lyons, J., van Parijs, L. & Beg, A.A. Combined deficiency of p50 and cRel in CD4+ T cells reveals an essential requirement for nuclear factor κB in regulating mature T cell survival and in vivo function. J. Exp. Med.197, 861–874 (2003). ArticleCASPubMed Central Google Scholar