IFI16 is an innate immune sensor for intracellular DNA (original) (raw)
Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature449, 819–826 (2007). ArticleCAS Google Scholar
Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity27, 370–383 (2007). ArticleCAS Google Scholar
Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001). ArticleCAS Google Scholar
O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol.7, 353–364 (2007). ArticleCAS Google Scholar
Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med.198, 513–520 (2003). ArticleCAS Google Scholar
Hornung, V. & Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol.10, 123–130 (2010). ArticleCAS Google Scholar
Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity24, 93–103 (2006). ArticleCAS Google Scholar
Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol.7, 40–48 (2006). ArticleCAS Google Scholar
Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature455, 674–678 (2008). ArticleCAS Google Scholar
Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity29, 538–550 (2008). ArticleCAS Google Scholar
Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA106, 8653–8658 (2009). ArticleCAS Google Scholar
Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature461, 788–792 (2009). ArticleCAS Google Scholar
Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA106, 20842–20846 (2009). ArticleCAS Google Scholar
Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448, 501–505 (2007). ArticleCAS Google Scholar
Lippmann, J. et al. IFNβ responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cell. Microbiol.10, 2579–2588 (2008). ArticleCAS Google Scholar
Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature451, 725–729 (2008). ArticleCAS Google Scholar
Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell138, 576–591 (2009). ArticleCAS Google Scholar
Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol.10, 1065–1072 (2009). ArticleCAS Google Scholar
Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature458, 514–518 (2009). ArticleCAS Google Scholar
Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458, 509–513 (2009). ArticleCAS Google Scholar
Roberts, T.L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science323, 1057–1060 (2009). ArticleCAS Google Scholar
Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol.10, 266–272 (2009). Article Google Scholar
Yan, H. et al. RPA nucleic acid-binding properties of IFI16–HIN200. Biochim. Biophys. Acta1784, 1087–1097 (2008). ArticleCAS Google Scholar
Schroder, M., Baran, M. & Bowie, A.G. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKɛ-mediated IRF activation. EMBO J.27, 2147–2157 (2008). Article Google Scholar
Rasmussen, S.B. et al. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems. J. Virol.81, 13315–13324 (2007). ArticleCAS Google Scholar
Luan, Y., Lengyel, P. & Liu, C.J. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev.19, 357–369 (2008). ArticleCAS Google Scholar
Liu, T., Rojas, A., Ye, Y. & Godzik, A. Homology modeling provides insights into the binding mode of the PAAD/DAPIN/pyrin domain, a fourth member of the CARD/DD/DED domain family. Protein Sci.12, 1872–1881 (2003). ArticleCAS Google Scholar
Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat. Immunol.11, 63–69 (2009). Article Google Scholar
Rothenfusser, S. et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol.175, 5260–5268 (2005). ArticleCAS Google Scholar
Johnston, J.B. et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity23, 587–598 (2005). ArticleCAS Google Scholar
Rahman, M.M., Mohamed, M.R., Kim, M., Smallwood, S. & McFadden, G. Co-regulation of NF-κB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013. PLoS Pathog.5, e1000635 (2009). Article Google Scholar
Cristea, I.M. et al. Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J. Virol.84, 7803–7814 (2010). ArticleCAS Google Scholar
Monroe, K.M., McWhirter, S.M. & Vance, R.E. Induction of type I interferons by bacteria. Cell. Microbiol.12, 881–890 (2010). ArticleCAS Google Scholar
Prantner, D., Darville, T. & Nagarajan, U.M. STING is critical for induction of IFN-β during Chlamydia muridarum infection. J. Immunol.184, 2551–2560 (2010). ArticleCAS Google Scholar
Mondini, M. et al. Role of the interferon-inducible gene IFI16 in the etiopathogenesis of systemic autoimmune disorders. Ann. NY Acad. Sci.1110, 47–56 (2007). ArticleCAS Google Scholar
Choubey, D. & Panchanathan, R. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol. Lett.119, 32–41 (2008). ArticleCAS Google Scholar
Kimkong, I., Avihingsanon, Y. & Hirankarn, N. Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus18, 1066–1072 (2009). ArticleCAS Google Scholar
Roberson, S.M. & Walker, W.S. Immortalization of cloned mouse splenic macrophages with a retrovirus containing the v-raf/mil and v-myc oncogenes. Cell. Immunol.116, 341–351 (1988). ArticleCAS Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol.9, 847–856 (2008). ArticleCAS Google Scholar
Liu, C.J., Wang, H. & Lengyel, P. The interferon-inducible nucleolar p204 protein binds the ribosomal RNA-specific UBF1 transcription factor and inhibits ribosomal RNA transcription. EMBO J.18, 2845–2854 (1999). ArticleCAS Google Scholar
Roberts, Z.J. et al. The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis. J. Exp. Med.204, 1559–1569 (2007). ArticleCAS Google Scholar