RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota (original) (raw)
Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host-bacterial mutualism in the human intestine. Science307, 1915–1920 (2005). Article Google Scholar
Duerkop, B.A., Vaishnava, S. & Hooper, L.V. Immune responses to the microbiota at the intestinal mucosal surface. Immunity31, 368–376 (2009). ArticleCAS Google Scholar
Nagler-Anderson, C. Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol.1, 59–67 (2001). ArticleCAS Google Scholar
Eberl, G. & Lochner, M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol.2, 478–485 (2009). ArticleCAS Google Scholar
Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol.9, 313–323 (2009). ArticleCAS Google Scholar
Eberl, G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol.3, 450–460 (2010). ArticleCAS Google Scholar
Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature455, 804–807 (2008). ArticleCAS Google Scholar
Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity21, 241–254 (2004). ArticleCAS Google Scholar
Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol.36, 1309–1323 (2006). ArticleCAS Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med.14, 282–289 (2008). ArticleCAS Google Scholar
Sonnenberg, G.F., Monticelli, L.A., Elloso, M.M., Fouser, L.A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity34, 122–134 (2011). ArticleCAS Google Scholar
Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med.14, 275–281 (2008). ArticleCAS Google Scholar
De Luca, A. et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol.3, 361–373 (2010). ArticleCAS Google Scholar
Pan, H., Hong, F., Radaeva, S. & Gao, B. Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell. Mol. Immunol.1, 43–49 (2004). CASPubMed Google Scholar
Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity27, 647–659 (2007). ArticleCAS Google Scholar
Zenewicz, L.A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity29, 947–957 (2008). ArticleCAS Google Scholar
Kastelein, R.A., Hunter, C.A. & Cua, D.J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol.25, 221–242 (2007). ArticleCAS Google Scholar
Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445, 648–651 (2007). ArticleCAS Google Scholar
Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol.179, 8098–8104 (2007). ArticleCAS Google Scholar
Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med.203, 2271–2279 (2006). ArticleCAS Google Scholar
Wolk, K., Kunz, S., Asadullah, K. & Sabat, R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol.168, 5397–5402 (2002). ArticleCAS Google Scholar
Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol.12, 21–27 (2011). ArticleCAS Google Scholar
Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity29, 958–970 (2008). ArticleCAS Google Scholar
Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457, 722–725 (2009). ArticleCAS Google Scholar
Sanos, S.L. et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol.10, 83–91 (2009). ArticleCAS Google Scholar
Luci, C. et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol.10, 75–82 (2009). ArticleCAS Google Scholar
Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol.10, 66–74 (2009). ArticleCAS Google Scholar
Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3−LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity7, 493–504 (1997). ArticleCAS Google Scholar
Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science305, 248–251 (2004). ArticleCAS Google Scholar
Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med.206, 35–41 (2009). ArticleCAS Google Scholar
Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science330, 665–669 (2010). ArticleCAS Google Scholar
Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). ArticleCAS Google Scholar
Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol.5, 64–73 (2004). ArticleCAS Google Scholar
Ivanov, I.I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe4, 337–349 (2008). ArticleCAS Google Scholar
Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature456, 507–510 (2008). ArticleCAS Google Scholar
Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med.205, 1381–1393 (2008). ArticleCAS Google Scholar
Yoshida, H. et al. IL-7 receptor α+ CD3− cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol.11, 643–655 (1999). ArticleCAS Google Scholar
Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol.3, 292–303 (2003). ArticleCAS Google Scholar
Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med.205, 2191–2198 (2008). ArticleCAS Google Scholar
Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature464, 1367–1370 (2010). ArticleCAS Google Scholar
Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature463, 540–544 (2009). Article Google Scholar
Geier, M.S., Smith, C.L., Butler, R.N. & Howarth, G.S. Small-intestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of Lactobacillus fermentum BR11. Dig. Dis. Sci.54, 1222–1228 (2009). ArticleCAS Google Scholar
Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med.208, 125–134 (2011). ArticleCAS Google Scholar
Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol.21, 759–806 (2003). ArticleCAS Google Scholar
Eberl, G. Immunology: Close encounters of the second type. Nature464, 1285–1286 (2010). ArticleCAS Google Scholar
Harris, T.J. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol.179, 4313–4317 (2007). ArticleCAS Google Scholar
Mathur, A.N. et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J. Immunol.178, 4901–4907 (2007). ArticleCAS Google Scholar
Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol.8, 337–348 (2008). ArticleCAS Google Scholar
Jensen, K.D. et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity29, 90–100 (2008). ArticleCAS Google Scholar
Michel, M.L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA105, 19845–19850 (2008). ArticleCAS Google Scholar
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity31, 677–689 (2009). ArticleCAS Google Scholar
Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139, 485–498 (2009). ArticleCAS Google Scholar
Hans, W., Scholmerich, J., Gross, V. & Falk, W. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur. J. Gastroenterol. Hepatol.12, 267–273 (2000). ArticleCAS Google Scholar
Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature464, 1371–1375 (2010). ArticleCAS Google Scholar
Zenewicz, L.A., Antov, A. & Flavell, R.A. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol. Med.15, 199–207 (2009). ArticleCAS Google Scholar
Sarra, M., Pallone, F., Macdonald, T.T. & Monteleone, G. IL-23/IL-17 axis in IBD. Inflamm. Bowel Dis.16, 1808–1813 (2010). Article Google Scholar
Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003). ArticleCAS Google Scholar
Kleinschek, M.A. et al. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med.204, 161–170 (2007). ArticleCAS Google Scholar