The gut microbiota shapes intestinal immune responses during health and disease (original) (raw)
Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell124, 837–848 (2006). CASPubMed Google Scholar
Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature449, 811–818 (2007). ArticleCASPubMed Google Scholar
Hooper, L. V. Bacterial contributions to mammalian gut development. Trends Microbiol.12, 129–134 (2004). ArticleCASPubMed Google Scholar
Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Rev. Immunol.6, 849–858 (2006). ArticleCAS Google Scholar
Peterson, D. A., Frank, D. N., Pace, N. R. & Gordon, J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe3, 417–427 (2008). ArticleCASPubMedPubMed Central Google Scholar
Frank, D. N. & Pace, N. R. Gastrointestinal microbiology enters the metagenomics era. Curr. Opin. Gastroenterol.24, 4–10 (2008). ArticleCASPubMed Google Scholar
Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science292, 1115–1118 (2001). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol.4, 478–485 (2004). ArticleCAS Google Scholar
Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev.62, 1157–1170 (1998). CASPubMedPubMed Central Google Scholar
Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature456, 507–510 (2008). This study shows that peptidoglycans from Gram-negative bacteria induce the generation of ILFs through the recognition of NOD1. In the absence of ILF formation, marked changes in the composition of the microbiota occur. ArticleCASPubMed Google Scholar
Abrams, G. D., Bauer, H. & Sprinz, H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest.12, 355–364 (1963). CASPubMed Google Scholar
Bry, L., Falk, P. G., Midtvedt, T. & Gordon, J. I. A model of host–microbial interactions in an open mammalian ecosystem. Science273, 1380–1383 (1996). ArticleCASPubMed Google Scholar
Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science313, 1126–1130 (2006). These authors show that microbial colonization of germ-free mice induces the production of REG3γ, a secreted C-type lectin. REG3γ is shown to have antimicrobial activity by binding to peptidoglycans, suggesting that microbial species actively shape the intestinal environment to their advantage. ArticleCASPubMedPubMed Central Google Scholar
Sonnenburg, J. L., Chen, C. T. & Gordon, J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol.4, e413 (2006). Using co-colonization of germ-free mice withB. thetaiotaomicron(a symbiont) andB. longum(a probiotic), this study shows thatB. longumcan increase the diversity of polysaccharides that can be degraded byB. thetaiotaomicron, demonstrating that distinct intestinal bacterial species can affect each other's function.
Sprinz, H. et al. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am. J. Pathol.39, 681–695 (1961). CASPubMedPubMed Central Google Scholar
Maier, B. R. & Hentges, D. J. Experimental Shigella infections in laboratory animals. I. Antagonism by human normal flora components in gnotobiotic mice. Infect. Immun.6, 168–173 (1972). CASPubMedPubMed Central Google Scholar
Zachar, Z. & Savage, D. C. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect. Immun.23, 168–174 (1979). CASPubMedPubMed Central Google Scholar
Inagaki, H., Suzuki, T., Nomoto, K. & Yoshikai, Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect. Immun.64, 3280–3287 (1996). CASPubMedPubMed Central Google Scholar
Nardi, R. M., Silva, M. E., Vieira, E. C., Bambirra, E. A. & Nicoli, J. R. Intragastric infection of germfree and conventional mice with Salmonella typhimurium. Braz. J. Med. Biol. Res.22, 1389–1392 (1989). CASPubMed Google Scholar
Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol.5, e244 (2007). These authors show that the intestinal pathogenS. Typhimurium uses inflammation to disturb the commensal microbiota to induce disease. ArticleCASPubMed Central Google Scholar
Nardi, R. M. et al. Bacteriological and immunological aspects of conventional and germfree mice infected with Salmonella typhimurium. Rev. Latinoam. Microbiol.33, 239–243 (1991). CASPubMed Google Scholar
Podolsky, D. K. The current future understanding of inflammatory bowel disease. Best Pract. Res. Clin. Gastroenterol.16, 933–943 (2002). ArticlePubMed Google Scholar
Targan, S. R. & Karp, L. C. Defects in mucosal immunity leading to ulcerative colitis. Immunol. Rev.206, 296–305 (2005). ArticleCASPubMed Google Scholar
Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nature Rev. Immunol.3, 521–533 (2003). ArticleCAS Google Scholar
Kullberg, M. C. et al. IL-23 plays a key role in _Helicobacter hepaticus_-induced T cell-dependent colitis. J. Exp. Med.203, 2485–2494 (2006). ArticleCASPubMedPubMed Central Google Scholar
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schmechel, S. et al. Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflamm. Bowel Dis.14, 204–212 (2008). ArticlePubMed Google Scholar
Kobayashi, T. et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut57, 1682–1689 (2008). ArticleCASPubMed Google Scholar
Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology134, 577–594 (2008). ArticleCASPubMed Google Scholar
Fontenot, J. D. & Rudensky, A. Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunol.6, 331–337 (2005). ArticleCAS Google Scholar
Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol.8, 523–532 (2008). ArticleCAS Google Scholar
Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med.204, 1757–1764 (2007). ArticleCASPubMedPubMed Central Google Scholar
Powrie, F. & Maloy, K. J. Immunology. Regulating the regulators. Science299, 1030–1031 (2003). ArticleCASPubMed Google Scholar
Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature450, 566–569 (2007). ArticleCASPubMed Google Scholar
Ivanov, II. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe4, 337–349 (2008). ArticleCASPubMedPubMed Central Google Scholar
Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature455, 808–812 (2008). ArticleCASPubMed Google Scholar
Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity29, 637–649 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). This is one of the first studies to suggest that recognition of TLR ligands from commensal bacteria by the host is important for the maintenance of intestinal homeostasis. ArticleCASPubMed Google Scholar
Ostman, S., Rask, C., Wold, A. E., Hultkrantz, S. & Telemo, E. Impaired regulatory T cell function in germ-free mice. Eur. J. Immunol.36, 2336–2346 (2006). ArticleCASPubMed Google Scholar
Ishikawa, H. et al. Effect of intestinal microbiota on the induction of regulatory CD25+ CD4+ T cells. Clin. Exp. Immunol.153, 127–135 (2008). ArticleCASPubMedPubMed Central Google Scholar
Strauch, U. G. et al. Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut54, 1546–1552 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine. J. Exp. Med.205, 2191–2198 (2008). ArticleCASPubMedPubMed Central Google Scholar
De Winter, H., Cheroutre, H. & Kronenberg, M. Mucosal immunity and inflammation. II. The yin and yang of T cells in intestinal inflammation: pathogenic and protective roles in a mouse colitis model. Am. J. Physiol.276, G1317–G1321 (1999). CASPubMed Google Scholar
Simpson, S. J., de Jong, Y. P., Comiskey, M. & Terhorst, C. Pathways of T cell pathology in models of chronic intestinal inflammation. Int. Rev. Immunol.19, 1–37 (2000). ArticleCASPubMed Google Scholar
Elson, C. O. et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology132, 2359–2370 (2007). ArticleCASPubMed Google Scholar
Sartor, R. B. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res. Immunol.148, 567–576 (1997). ArticleCASPubMed Google Scholar
Macpherson, A., Khoo, U. Y., Forgacs, I., Philpott-Howard, J. & Bjarnason, I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut38, 365–375 (1996). ArticleCASPubMedPubMed Central Google Scholar
Elson, C. O. Commensal bacteria as targets in Crohn's disease. Gastroenterology119, 254–257 (2000). ArticleCASPubMed Google Scholar
Tannock, G. W. Exploring the relationships between intestinal microflora and inflammatory conditions of the human bowel and spine. Antonie Van Leeuwenhoek81, 529–535 (2002). ArticlePubMed Google Scholar
Kent, T. H., Summers, R. W., DenBesten, L., Swaner, J. C. & Hrouda, M. Effect of antibiotics on bacterial flora of rats with intestinal blind loops. Proc. Soc. Exp. Biol. Med.132, 63–67 (1969). ArticleCASPubMed Google Scholar
Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med.180, 2359–2364 (1994). ArticleCASPubMed Google Scholar
Rath, H. C. Role of commensal bacteria in chronic experimental colitis: lessons from the HLA-B27 transgenic rat. Pathobiology70, 131–138 (2002). ArticleCASPubMed Google Scholar
Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun.66, 5224–5231 (1998). CASPubMedPubMed Central Google Scholar
Cahill, R. J. et al. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect. Immun.65, 3126–3131 (1997). CASPubMedPubMed Central Google Scholar
Kullberg, M. C. et al. Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc. Natl Acad. Sci. USA100, 15830–15835 (2003). ArticleCASPubMedPubMed Central Google Scholar
Barnich, N. et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest.117, 1566–1574 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hampe, J. et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet357, 1925–1928 (2001). ArticleCASPubMed Google Scholar
Kim, S. C., Tonkonogy, S. L., Karrasch, T., Jobin, C. & Sartor, R. B. Dual-association of gnotobiotic Il-10−/− mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm. Bowel Dis.13, 1457–1466 (2007). ArticlePubMed Google Scholar
Ley, R. E., Knight, R. & Gordon, J. I. The human microbiome: eliminating the biomedical/environmental dichotomy in microbial ecology. Environ. Microbiol.9, 3–4 (2007). ArticlePubMed Google Scholar
Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature453, 620–625 (2008). ArticleCASPubMed Google Scholar
Glimcher, L. H. Trawling for treasure: tales of T-bet. Nature Immunol.8, 448–450 (2007). ArticleCAS Google Scholar
Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell131, 33–45 (2007). This study shows that mice that lack T-bet expression in innate immune cells develop spontaneous colitis. Moreover, transfer of the microbiota from these mice is shown to induce disease in wild-type recipient mice. ArticleCASPubMedPubMed Central Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). These authors show that the microbiome from obese mice has an increased capacity for energy harvest. Transfer of the microbiota to non-obese mice increases their mean fat body weight, suggesting that a change in the microbiota can induce obesity. ArticlePubMed Google Scholar
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006). ArticleCASPubMed Google Scholar
Lepage, P. et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm. Bowel Dis.11, 473–480 (2005). ArticlePubMed Google Scholar
Scanlan, P. D., Shanahan, F., O'Mahony, C. & Marchesi, J. R. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn's disease. J. Clin. Microbiol.44, 3980–3988 (2006). ArticleCASPubMedPubMed Central Google Scholar
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104, 13780–13785 (2007). This study indicates that the intestinal microbial populations in patients with IBD and non-IBD patients differ greatly. ArticleCASPubMedPubMed Central Google Scholar
Sartor, R. B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology126, 1620–1633 (2004). ArticlePubMed Google Scholar
Di Giacinto, C., Marinaro, M., Sanchez, M., Strober, W. & Boirivant, M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing regulatory cells. J. Immunol.174, 3237–3246 (2005). ArticleCASPubMed Google Scholar
O'Mahony, C. et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog.4, e1000112 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA105, 16731–16736 (2008). These authors show thatF. prausnitziiis specifically reduced in the intestine of patients with Crohn's disease. In addition, this bacterium is shown to have an anti-inflammatory capacity and to protect animals from disease when given orally, suggesting that symbiotic microorganisms may be directly involved in maintaining health. ArticleCASPubMedPubMed Central Google Scholar
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell122, 107–118 (2005). ArticleCASPubMed Google Scholar
Roncarolo, M. G. & Battaglia, M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nature Rev. Immunol.7, 585–598 (2007). ArticleCAS Google Scholar
Cong, Y. et al. Generation of antigen-specific, Foxp3-expressing CD4+ regulatory T cells by inhibition of APC proteosome function. J. Immunol.174, 2787–2795 (2005). ArticleCASPubMed Google Scholar
Noverr, M. C. & Huffnagle, G. B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol.12, 562–568 (2004). ArticleCASPubMed Google Scholar
Bjorksten, B. The environmental influence on childhood asthma. Allergy54, S17–S23 (1999). Article Google Scholar
Penders, J. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut56, 661–667 (2007). ArticleCASPubMed Google Scholar
Kalliomaki, M. & Isolauri, E. Pandemic of atopic diseases — a lack of microbial exposure in early infancy? Curr. Drug Targets. Infect. Disord.2, 193–199 (2002). ArticleCASPubMed Google Scholar
Kalliomaki, M. & Isolauri, E. Role of intestinal flora in the development of allergy. Curr. Opin. Allergy Clin. Immunol.3, 15–20 (2003). ArticleCASPubMed Google Scholar
Sakaguchi, S. et al. Foxp3+ CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev.212, 8–27 (2006). ArticleCASPubMed Google Scholar
Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol.5, e177 (2007). ArticleCASPubMedPubMed Central Google Scholar
Izcue, A. et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity28, 559–570 (2008). This report shows that FOXP3-deficient T cells can induce colitis in IL-23-deficient recipients, suggesting that disease can occur in the absence of regulation. ArticleCASPubMedPubMed Central Google Scholar
Moreau, M. C., Ducluzeau, R., Guy-Grand, D. & Muller, M. C. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect. Immun.21, 532–539 (1978). CASPubMedPubMed Central Google Scholar
Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA101, 1981–1986 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kroese, F. G., de Waard, R. & Bos, N. A. B-1 cells and their reactivity with the murine intestinal microflora. Semin. Immunol.8, 11–18 (1996). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science303, 1662–1665 (2004). ArticleCASPubMed Google Scholar
Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology115, 153–162 (2005). ArticleCASPubMedPubMed Central Google Scholar
He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity26, 812–826 (2007). ArticleCASPubMed Google Scholar
Cerutti, A. The regulation of IgA class switching. Nature Rev. Immunol.8, 421–434 (2008). ArticleCAS Google Scholar
Tezuka, H. et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature448, 929–933 (2007). ArticleCASPubMed Google Scholar
Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe2, 328–339 (2007). ArticleCASPubMed Google Scholar
O'Mahony, S. M. et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry65, 263–267 (2009). ArticlePubMed Google Scholar