Genetic analysis of basophil function in vivo (original) (raw)
Chan, M.S. The global burden of intestinal nematode infections–fifty years on. Parasitol. Today13, 438–443 (1997). ArticleCASPubMed Google Scholar
Urban, J.F. Jr. Maliszewski, C.R., Madden, K.B., Katona, I.M. & Finkelman, F.D. IL-4 treatment can cure established gastrointestinal nematode infections in immunocompetent and immunodeficient mice. J. Immunol.154, 4675–4684 (1995). CASPubMed Google Scholar
Urban, J.F. Jr. et al. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity8, 255–264 (1998). ArticleCASPubMed Google Scholar
Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med.203, 1435–1446 (2006). ArticleCASPubMedPubMed Central Google Scholar
Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature463, 540–544 (2010). ArticleCASPubMed Google Scholar
Price, A.E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA107, 11489–11494 (2010). ArticleCASPubMedPubMed Central Google Scholar
Oh, K., Shen, T., Le Gros, G. & Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood109, 2921–2927 (2007). CASPubMed Google Scholar
Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol.9, 310–318 (2008). CASPubMedPubMed Central Google Scholar
Yanagihara, Y. et al. Cultured basophils but not cultured mast cells induce human IgE synthesis in B cells after immunologic stimulation. Clin. Exp. Immunol.111, 136–143 (1998). ArticleCASPubMedPubMed Central Google Scholar
Perrigoue, J.G. et al. MHC class II–dependent basophil–CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat. Immunol.10, 697–705 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol.10, 713–720 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat. Immunol.10, 706–712 (2009). ArticleCASPubMed Google Scholar
Phythian-Adams, A.T. et al. CD11c depletion severely disrupts Th2 induction and development in vivo. J. Exp. Med.207, 2089–2096 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hammad, H. et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med.207, 2097–2111 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ohnmacht, C. et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity33, 364–374 (2010). ArticleCASPubMed Google Scholar
Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. Nat. Immunol.11, 608–617 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wada, T. et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J. Clin. Invest.120, 2867–2875 (2010). ArticleCASPubMedPubMed Central Google Scholar
Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med.200, 507–517 (2004). ArticleCASPubMedPubMed Central Google Scholar
Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity20, 267–277 (2004). ArticleCASPubMed Google Scholar
Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity23, 419–429 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity15, 303–311 (2001). ArticleCASPubMed Google Scholar
Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol.10, 385–393 (2009). ArticleCASPubMedPubMed Central Google Scholar
van Panhuys, N. et al. Basophils are the major producers of IL-4 during primary helminth infection. J. Immunol.186, 2719–2728 (2011). ArticleCASPubMed Google Scholar
Pearce, E.J. & MacDonald, A.S. The immunobiology of schistosomiasis. Nat. Rev. Immunol.2, 499–511 (2002). ArticleCASPubMed Google Scholar
Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature392, 90–93 (1998). ArticleCASPubMed Google Scholar
Lantz, C.S. et al. IL-3 is required for increases in blood basophils in nematode infection in mice and can enhance IgE-dependent IL-4 production by basophils in vitro. Lab. Invest.88, 1134–1142 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shen, T. et al. T cell-derived IL-3 plays key role in parasite infection-induced basophil production but is dispensable for in vivo basophil survival. Int. Immunol.20, 1201–1209 (2008). ArticleCASPubMed Google Scholar
Poorafshar, M., Helmby, H., Troye-Blomberg, M. & Hellman, L. MMCP-8, the first lineage-specific differentiation marker for mouse basophils. Elevated numbers of potent IL-4-producing and MMCP-8-positive cells in spleens of malaria-infected mice. Eur. J. Immunol.30, 2660–2668 (2000). ArticleCASPubMed Google Scholar
Gallwitz, M. & Hellman, L. Rapid lineage-specific diversification of the mast cell chymase locus during mammalian evolution. Immunogenetics58, 641–654 (2006). ArticleCASPubMed Google Scholar
Voehringer, D., Liang, H.E. & Locksley, R.M. Homeostasis and effector function of lymphopenia-induced 'memory-like' T cells in constitutively T cell-depleted mice. J. Immunol.180, 4742–4753 (2008). ArticleCASPubMed Google Scholar
Henrickson, S.E. & von Andrian, U.H. Single-cell dynamics of T-cell priming. Curr. Opin. Immunol.19, 249–258 (2007). ArticleCASPubMed Google Scholar
Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol.23, 127–159 (2005). ArticleCASPubMed Google Scholar
Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol.3, e150 (2005). ArticlePubMedPubMed Central Google Scholar
Voehringer, D., Wu, D., Liang, H.E. & Locksley, R.M. Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates. BMC Biotechnol.9, 69 (2009). ArticlePubMedPubMed Central Google Scholar
Sullivan, B.M. & Locksley, R.M. Basophils: a nonredundant contributor to host immunity. Immunity30, 12–20 (2009). ArticleCASPubMed Google Scholar
Ben-Sasson, S.Z., Le Gros, G., Conrad, D.H., Finkelman, F.D. & Paul, W.E. Cross-linking Fc receptors stimulate splenic non-B, non-T cells to secrete interleukin 4 and other lymphokines. Proc. Natl. Acad. Sci. USA87, 1421–1425 (1990). ArticleCASPubMedPubMed Central Google Scholar
Conrad, D.H., Ben-Sasson, S.Z., Le Gros, G., Finkelman, F.D. & Paul, W.E. Infection with Nippostrongylus brasiliensis or injection of anti-IgD antibodies markedly enhances Fc-receptor-mediated interleukin 4 production by non-B, non-T cells. J. Exp. Med.171, 1497–1508 (1990). ArticleCASPubMed Google Scholar
Le Gros, G. et al. IL-3 promotes production of IL-4 by splenic non-B, non-T cells in response to Fc receptor cross-linkage. J. Immunol.145, 2500–2506 (1990). CASPubMed Google Scholar
Seder, R.A. et al. Purified FcɛR+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin. J. Immunol.147, 903–909 (1991). CASPubMed Google Scholar
Denzel, A. et al. Basophils enhance immunological memory responses. Nat. Immunol.9, 733–742 (2008). ArticleCASPubMed Google Scholar
Obata, K. et al. Basophils are essential initiators of a novel type of chronic allergic inflammation. Blood110, 913–920 (2007). ArticleCASPubMed Google Scholar
Ohnmacht, C. & Voehringer, D. Basophil effector function and homeostasis during helminth infection. Blood113, 2816–2825 (2009). ArticleCASPubMed Google Scholar
Kim, S. et al. Cutting edge: Basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J. Immunol.184, 1143–1147 (2010). ArticleCASPubMed Google Scholar
Gallwitz, M., Enoksson, M. & Hellman, L. Expression profile of novel members of the rat mast cell protease (rMCP)-2 and (rMCP)-8 families, and functional analyses of mouse mast cell protease (mMCP)-8. Immunogenetics59, 391–405 (2007). ArticleCASPubMed Google Scholar
Mukai, K. et al. Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity23, 191–202 (2005). ArticleCASPubMed Google Scholar
Finkelman, F.D. et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu. Rev. Immunol.15, 505–533 (1997). ArticleCASPubMed Google Scholar
Finkelman, F.D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev.201, 139–155 (2004). ArticleCASPubMed Google Scholar
Fallon, P.G. et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity17, 7–17 (2002). ArticleCASPubMed Google Scholar
Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol.76, 34–40 (1998). ArticleCASPubMed Google Scholar
Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature446, 547–551 (2007). ArticleCASPubMed Google Scholar
Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science315, 528–531 (2007). ArticleCASPubMed Google Scholar
Lindquist, R.L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol.5, 1243–1250 (2004). ArticleCASPubMed Google Scholar
Davies, S.J. et al. Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science294, 1358–1361 (2001). ArticleCASPubMed Google Scholar
Delmotte, P. & Sanderson, M.J. Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am. J. Respir. Cell Mol. Biol.35, 110–117 (2006). ArticleCASPubMedPubMed Central Google Scholar