Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity (original) (raw)
Brooker, S. Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers—a review. Int. J. Parasitol.40, 1137–1144 (2010). Article Google Scholar
Finkelman, F.D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev.201, 139–155 (2004). ArticleCAS Google Scholar
Fallon, P.G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med.203, 1105–1116 (2006). ArticleCAS Google Scholar
Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity15, 985–995 (2001). ArticleCAS Google Scholar
Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature463, 540–544 (2010). ArticleCAS Google Scholar
Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature464, 1367–1370 (2010). ArticleCAS Google Scholar
Price, A.E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA107, 11489–11494 (2010). ArticleCAS Google Scholar
Urban, J.F. Jr. et al. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity8, 255–264 (1998). ArticleCAS Google Scholar
Fallon, P.G. et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity17, 7–17 (2002). ArticleCAS Google Scholar
McKenzie, G.J., Fallon, P.G., Emson, C.L., Grencis, R.K. & McKenzie, A.N. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J. Exp. Med.189, 1565–1572 (1999). ArticleCAS Google Scholar
Rankin, J.A. et al. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc. Natl. Acad. Sci. USA93, 7821–7825 (1996). ArticleCAS Google Scholar
Fallon, P.G., Emson, C.L., Smith, P. & McKenzie, A.N. IL-13 overexpression predisposes to anaphylaxis following antigen sensitization. J. Immunol.166, 2712–2716 (2001). ArticleCAS Google Scholar
Munitz, A., Brandt, E.B., Mingler, M., Finkelman, F.D. & Rothenberg, M.E. Distinct roles for IL-13 and IL-4 via IL-13 receptor α1 and the type II IL-4 receptor in asthma pathogenesis. Proc. Natl. Acad. Sci. USA105, 7240–7245 (2008). ArticleCAS Google Scholar
Wilson, C.B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol.9, 91–105 (2009). ArticleCAS Google Scholar
Grünig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science282, 2261–2263 (1998). Article Google Scholar
Perkins, C., Wills-Karp, M. & Finkelman, F.D. IL-4 induces IL-13-independent allergic airway inflammation. J. Allergy Clin. Immunol.118, 410–419 (2006). ArticleCAS Google Scholar
Gessner, A., Mohrs, K. & Mohrs, M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J. Immunol.174, 1063–1072 (2005). ArticleCAS Google Scholar
Stetson, D.B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med.198, 1069–1076 (2003). ArticleCAS Google Scholar
Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity23, 419–429 (2005). ArticleCAS Google Scholar
Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol.10, 385–393 (2009). ArticleCAS Google Scholar
Voehringer, D., Liang, H.E. & Locksley, R.M. Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J. Immunol.180, 4742–4753 (2008). ArticleCAS Google Scholar
Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med.203, 1435–1446 (2006). ArticleCAS Google Scholar
Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity15, 303–311 (2001). ArticleCAS Google Scholar
King, C. New insights into the differentiation and function of T follicular helper cells. Nat. Rev. Immunol.9, 757–766 (2009). ArticleCAS Google Scholar
Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science325, 1006–1010 (2009). ArticleCAS Google Scholar
Yusuf, I. et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol.185, 190–202 (2010). ArticleCAS Google Scholar
King, I.L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med.206, 1001–1007 (2009). ArticleCAS Google Scholar
Zaretsky, A.G. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med.206, 991–999 (2009). ArticleCAS Google Scholar
Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity31, 457–468 (2009). ArticleCAS Google Scholar
Nurieva, R.I. et al. Bcl6 mediates the development of T follicular helper cells. Science325, 1001–1005 (2009). ArticleCAS Google Scholar
Ho, I.C., Tai, T.S. & Pai, S.Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol.9, 125–135 (2009). ArticleCAS Google Scholar
Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity20, 267–277 (2004). ArticleCAS Google Scholar
Matsuda, J.L. et al. Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo. Proc. Natl. Acad. Sci. USA100, 8395–8400 (2003). ArticleCAS Google Scholar
Brown, D.R. et al. Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med.184, 1295–1304 (1996). ArticleCAS Google Scholar
Cui, J. et al. Inhibition of T helper cell type 2 cell differentiation and immunoglobulin E response by ligand-activated Vα14 natural killer T cells. J. Exp. Med.190, 783–792 (1999). ArticleCAS Google Scholar
Ohnmacht, C. et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity33, 364–374 (2010). ArticleCAS Google Scholar
Sullivan, B.M. et al. Genetic analysis of basophil function in vivo. Nat. Immunol.12, 527–535 (2011). ArticleCAS Google Scholar
Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity19, 863–875 (2003). ArticleCAS Google Scholar
Tanaka, S. et al. The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in TH2 cells. Nat. Immunol.12, 77–85 (2011). ArticleCAS Google Scholar
Ozawa, H. et al. Immune responses to Nippostrongylus brasiliensis and tuberculin protein in GATA-3-transgenic mice. Immunol. Lett.99, 228–235 (2005). ArticleCAS Google Scholar
Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity12, 27–37 (2000). ArticleCAS Google Scholar
Kusam, S., Toney, L.M., Sato, H. & Dent, A.L. Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J. Immunol.170, 2435–2441 (2003). ArticleCAS Google Scholar
Harris, M.B., Mostecki, J. & Rothman, P.B. Repression of an interleukin-4-responsive promoter requires cooperative BCL-6 function. J. Biol. Chem.280, 13114–13121 (2005). ArticleCAS Google Scholar