Molecular definition of the identity and activation of natural killer cells (original) (raw)

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).
    Article CAS Google Scholar
  2. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).
    Article CAS Google Scholar
  3. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).
    Article CAS Google Scholar
  4. Herberman, R.B., Nunn, M.E., Holden, H.T. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).
    Article CAS Google Scholar
  5. Kiessling, R., Klein, E., Pross, H. & Wigzell, H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 5, 117–121 (1975).
    Article CAS Google Scholar
  6. Lanier, L.L. & Phillips, J.H. Ontogeny of natural killer cells. Nature 319, 269–270 (1986).
    Article CAS Google Scholar
  7. Di Santo, J.P. Natural killer cell developmental pathways: a question of balance. Annu. Rev. Immunol. 24, 257–286 (2006).
    Article CAS Google Scholar
  8. Yamagata, T., Benoist, C. & Mathis, D. A shared gene-expression signature in innate-like lymphocytes. Immunol. Rev. 210, 52–66 (2006).
    Article CAS Google Scholar
  9. Chambers, S.M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 1, 578–591 (2007).
    Article CAS Google Scholar
  10. Obata-Onai, A. et al. Comprehensive gene expression analysis of human NK cells and CD8+ T lymphocytes. Int. Immunol. 14, 1085–1098 (2002).
    Article CAS Google Scholar
  11. Hanna, J. et al. Novel insights on human NK cells' immunological modalities revealed by gene expression profiling. J. Immunol. 173, 6547–6563 (2004).
    Article CAS Google Scholar
  12. Dybkaer, K. et al. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 8, 230 (2007).
    Article Google Scholar
  13. Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).
    Article CAS Google Scholar
  14. Bezman, N. & Koretzky, G.A. Compartmentalization of ITAM and integrin signaling by adapter molecules. Immunol. Rev. 218, 9–28 (2007).
    Article CAS Google Scholar
  15. Pont, F. et al. The gene expression profile of phosphoantigen-specific human gammadelta T lymphocytes is a blend of αβ T-cell and NK-cell signatures. Eur. J. Immunol. 42, 228–240 (2012).
    Article CAS Google Scholar
  16. Wilson, S.B. & Byrne, M.C. Gene expression in NKT cells: defining a functionally distinct CD1d-restricted T cell subset. Curr. Opin. Immunol. 13, 555–561 (2001).
    Article CAS Google Scholar
  17. Hesslein, D.G. & Lanier, L.L. Transcriptional control of natural killer cell development and function. Adv. Immunol. 109, 45–85 (2011).
    Article CAS Google Scholar
  18. Sun, Y. et al. Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res. 34, 6314–6326 (2006).
    Article CAS Google Scholar
  19. Li, M.O. & Flavell, R.A. TGF-β: a master of all T cell trades. Cell 134, 392–404 (2008).
    Article CAS Google Scholar
  20. Akbulut, S. et al. Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol. Biol. Cell 21, 3487–3496 (2010).
    Article CAS Google Scholar
  21. Narni-Mancinelli, E. et al. Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc. Natl. Acad. Sci. USA 108, 18324–18329 (2011).
    Article CAS Google Scholar
  22. Yu, J. et al. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J. Clin. Invest. 121, 1456–1470 (2011).
    Article CAS Google Scholar
  23. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).
    Article CAS Google Scholar
  24. Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 8, 1337–1344 (2007).
    Article CAS Google Scholar
  25. Despoix, N. et al. Mouse CD146/MCAM is a marker of natural killer cell maturation. Eur. J. Immunol. 38, 2855–2864 (2008).
    Article CAS Google Scholar
  26. Arase, H., Saito, T., Phillips, J.H. & Lanier, L.L. Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol. 167, 1141–1144 (2001).
    Article CAS Google Scholar
  27. Ewen, C.L., Kane, K.P. & Bleackley, R.C. A quarter century of granzymes. Cell Death Differ. 19, 28–35 (2012).
    Article CAS Google Scholar
  28. Young, J.D., Hengartner, H., Podack, E.R. & Cohn, Z.A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44, 849–859 (1986).
    Article CAS Google Scholar
  29. Colige, A. et al. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J. Biol. Chem. 277, 5756–5766 (2002).
    Article CAS Google Scholar
  30. Hirst, C.E. et al. The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J. Immunol. 170, 805–815 (2003).
    Article CAS Google Scholar
  31. Zhang, M. et al. Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 24, 451–461 (2006).
    Article CAS Google Scholar
  32. Liu, L. et al. A novel protein tyrosine kinase NOK that shares homology with platelet-derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res. 64, 3491–3499 (2004).
    Article CAS Google Scholar
  33. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).
    Article CAS Google Scholar
  34. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).
    Article CAS Google Scholar
  35. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).
    Article CAS Google Scholar
  36. Sun, J.C., Lopez-Verges, S., Kim, C.C., DeRisi, J.L. & Lanier, L.L. NK cells and immune “memory”. J. Immunol 186, 1891–1897 (2011).
    Article CAS Google Scholar
  37. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).
    Article CAS Google Scholar
  38. Palmer, D.C. & Restifo, N.P. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 30, 592–602 (2009).
    Article CAS Google Scholar
  39. Lee, S.H., Kim, K.S., Fodil-Cornu, N., Vidal, S.M. & Biron, C.A. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J. Exp. Med. 206, 2235–2251 (2009).
    Article CAS Google Scholar
  40. Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).
    Article CAS Google Scholar
  41. Xue, L., Chiang, L., He, B., Zhao, Y.Y. & Winoto, A. FoxM1, a forkhead transcription factor is a master cell cycle regulator for mouse mature T cells but not double positive thymocytes. PLoS ONE 5, e9229 (2011).
    Article Google Scholar
  42. Zhou, M. et al. Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J. Immunol. 178, 5496–5504 (2007).
    Article CAS Google Scholar
  43. O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell- and B cell- independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).
    Article CAS Google Scholar
  44. Sun, J.C. & Lanier, L.L. NK cell development, homeostasis and function: parallels with CD8 T cells. Nat. Rev. Immunol. 11, 645–(2011).
  45. Cui, W. & Kaech, S.M. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol. Rev. 236, 151–166 (2010).
    Article CAS Google Scholar
  46. Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).
    Article CAS Google Scholar
  47. Albrecht, I. et al. Persistence of effector memory Th1 cells is regulated by Hopx. Eur. J. Immunol. 40, 2993–3006 (2010).
    Article CAS Google Scholar
  48. Hawiger, D., Wan, Y.Y., Eynon, E.E. & Flavell, R.A. The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell-mediated peripheral T cell unresponsiveness. Nat. Immunol. 11, 962–968 (2010).
    Article CAS Google Scholar
  49. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).
    Article CAS Google Scholar

Download references

Acknowledgements

We thank A. Weiss (University of California, San Francisco) for antibody to Syk; the members of the ImmGen Consortium and M. Dozmorov for discussions; the ImmGen core team (M. Painter, J. Ericson and S. Davis) for data generation and processing; J. Jarjoura and J. Arakawa-Hoyt for assistance in cell sorting; A. Beaulieu, J. Karo and S. Madera for data from MCMV infection experiments; and eBioscience, Affymetrix and Expression Analysis for support of the ImmGen Project. Supported by the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (R24 AI072073 and R01 AI068129; T32AI060537 to D.W.H.; T32AI060536 to J.A.B.; and AI072117 to A.W.G.), the American Cancer Society (L.L.L. and N.A.B.), the Canadian Institutes of Health Research (G.M.-O.) and the Searle Scholars Program (J.C.S.).

Author information

Author notes

  1. Natalie A Bezman, Charles C Kim, Joseph C Sun and Charlie C Kim: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, San Francisco, California, USA
    Natalie A Bezman, Gundula Min-Oo, Deborah W Hendricks, Yosuke Kamimura & Lewis L Lanier
  2. Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
    Charles C Kim
  3. Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
    Joseph C Sun
  4. Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
    J Adam Best & Ananda W Goldrath
  5. Icahn Medical Institute, Mount Sinai Hospital, New York, New York, USA
    Emmanuel L Gautier, Claudia Jakubzick, Gwendalyn J Randolph, Jennifer Miller, Brian Brown & Miriam Merad
  6. Department of Pathology & Immunology, Washington University, St. Louis, Missouri, USA
    Emmanuel L Gautier & Gwendalyn J Randolph
  7. Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
    Adam J Best, Jamie Knell & Ananda Goldrath
  8. Computer Science Department, Stanford University, Stanford, California, USA
    Vladimir Jojic, Daphne Koller & Taras Kreslavsky
  9. Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
    Nadia Cohen, Patrick Brennan & Michael Brenner
  10. Broad Institute, Cambridge, Massachusetts, USA
    Tal Shay & Aviv Regev
  11. Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
    Anne Fletcher, Kutlu Elpek, Angelique Bellemare-Pelletier, Deepali Malhotra & Shannon Turley
  12. Department of Computer Science, Brown University, Providence, Rhode Island, USA
    Radu Jianu & David Laidlaw
  13. Department of Biomedical Engineering, Howard Hughes Medical Institute, Boston University, Boston, Massachusetts, USA
    Jim J Collins
  14. University of Massachusetts Medical School, Worcester, Massachusetts, USA
    Kavitha Narayan, Katelyn Sylvia & Joonsoo Kang
  15. Department of Stem Cell and Regenerative Biology, Harvard University, and Program in Cellular and Molecular Medicine, Children's Hospital, Boston, Massachusetts, USA
    Roi Gazit & Derrick J Rossi
  16. Joslin Diabetes Center, Boston, Massachusetts, USA
    Francis Kim, Tata Nageswara Rao & Amy Wagers
  17. Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
    Susan A Shinton & Richard R Hardy
  18. Department of Medicine, Boston University, Boston, Massachusetts, USA
    Paul Monach
  19. Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, USA
    Charlie C Kim
  20. Department of Microbiology & Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts, USA
    Tracy Heng, Michio Painter, Jeffrey Ericson, Scott Davis, Diane Mathis & Christophe Benoist

Authors

  1. Natalie A Bezman
  2. Charles C Kim
  3. Joseph C Sun
  4. Gundula Min-Oo
  5. Deborah W Hendricks
  6. Yosuke Kamimura
  7. J Adam Best
  8. Ananda W Goldrath
  9. Lewis L Lanier

Consortia

The Immunological Genome Project Consortium

Contributions

C.C.K. analyzed data; N.A.B. and J.C.S. sorted cell subsets, did follow-up experiments and analyzed data; G.M.-O., D.W.H. and Y.K. did experiments; J.A.B. and A.W.G. designed and did the T cell studies; and N.A.B., C.C.K., J.C.S. and L.L.L. designed studies and wrote the paper.

Corresponding author

Correspondence toLewis L Lanier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Full list of members and affiliations appears at the end of the paper.

Supplementary information

Rights and permissions

About this article

Cite this article

Bezman, N., Kim, C., Sun, J. et al. Molecular definition of the identity and activation of natural killer cells.Nat Immunol 13, 1000–1009 (2012). https://doi.org/10.1038/ni.2395

Download citation