Interleukin-12 and the regulation of innate resistance and adaptive immunity (original) (raw)
Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today13, 11–16 (1992). ArticleCASPubMed Google Scholar
Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA95, 588–593 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lertmemongkolchai, G., Cai, G., Hunter, C. A. & Bancroft, G. J. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J. Immunol.166, 1097–1105 (2001). This paper reports important experimental evidence in vivo in support of the concept that antigen-non-specific bystander T cells have an important role in the early production of pro-inflammatory cytokines in innate resistance. ArticleCASPubMed Google Scholar
Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science278, 1623–1626 (1997). ArticleCASPubMed Google Scholar
Ohteki, T. et al. Interleukin-12-dependent interferon-γ production by CD8α+ lymphoid dendritic cells. J. Exp. Med.189, 1981–1986 (1999). ArticleCASPubMedPubMed Central Google Scholar
Airoldi, I. et al. Expression and function of IL-12 and IL-18 receptors on human tonsillar B cells. J. Immunol.165, 6880–6888 (2000). ArticleCASPubMed Google Scholar
Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol.7, 145–173 (1989). ArticleCASPubMed Google Scholar
Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. & Paul, W. E. Generation of interleukin-4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med.172, 921–929 (1990). ArticleCASPubMed Google Scholar
Kobayashi, M. et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med.170, 827–846 (1989). This paper reports the first identification of IL-12, its functions and its heterodimeric structure. ArticleCASPubMed Google Scholar
Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by _Listeria_-induced macrophages. Science260, 547–549 (1993). This study was the first to show the pivotal role of IL-12 in TH1-cell differentiation in the mouse. ArticleCASPubMed Google Scholar
Manetti, R. et al. Natural killer cell stimulatory factor (interleukin-12 [IL-12]) induces T helper type 1 (TH1)-specific immune responses and inhibits the development of IL-4-producing TH cells. J. Exp. Med.177, 1199–1204 (1993). This study was the first demonstration of the ability of IL-12 to induce the differentiation of TH1-cell clones. ArticleCASPubMed Google Scholar
Stern, A. S. et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc. Natl Acad. Sci. USA87, 6808–6812 (1990). ArticleCASPubMedPubMed Central Google Scholar
D'Andrea, A. et al. Production of natural killer cell stimulatory factor (interleukin-12) by peripheral-blood mononuclear cells. J. Exp. Med.176, 1387–1398 (1992). ArticleCASPubMed Google Scholar
Macatonia, S. E. et al. Dendritic cells produce IL-12 and direct the development of TH1 cells from naive CD4+ T cells. J. Immunol.154, 5071–5079 (1995). This paper describes how dendritic cells (DCs) induce TH1-cell differentiation by producing IL-12 in response to antigen-activated T cells. CASPubMed Google Scholar
Merberg, D. M., Wolf, S. F. & Clark, S. C. Sequence similarity between NKSF and the IL-6/G-CSF family. Immunol. Today13, 77–78 (1992). ArticleCASPubMed Google Scholar
Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13, 715–725 (2000). This study reports the identification of IL-23. ArticleCASPubMed Google Scholar
Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and novel p28 protein, induces proliferation of naive CD4+ T cells. Immunity16, 779–790 (2002). This study reports the identification of IL-27. ArticleCASPubMed Google Scholar
Presky, D. H. et al. A functional interleukin-12 receptor complex is composed of two β-type cytokine receptor subunits. Proc. Natl Acad. Sci. USA93, 14002–14007 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature382, 171–174 (1996). ArticleCASPubMed Google Scholar
Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of TH2 cells in Stat4-deficient mice. Nature382, 174–177 (1996). ArticleCASPubMed Google Scholar
Grohmann, U. et al. IL-12 acts directly on DC to promote nuclear localization of NF-κB and primes DC for IL-12 production. Immunity9, 315–323 (1998). ArticleCASPubMed Google Scholar
Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med.185, 825–831 (1997). ArticleCASPubMedPubMed Central Google Scholar
Szabo, S. J., Dighe, A. S., Gubler, U. & Murphy, K. M. Regulation of the interleukin (IL)-12R β2-subunit expression in developing T helper 1 (TH1) and TH2 cells. J. Exp. Med.185, 817–824 (1997). References 22 and 23 show, in humans and in mice, that unresponsiveness of TH2 cells to IL-12 is owing to down-regulation of expression of IL-12Rβ2. ArticleCASPubMedPubMed Central Google Scholar
Wysocka, M. et al. Interleukin-12 is required for interferon-γ production and lethality in lipopolysaccharide-induced shock in mice. Eur. J. Immunol.25, 672–676 (1995). ArticleCASPubMed Google Scholar
Carra, G., Gerosa, F. & Trinchieri, G. Biosynthesis and posttranslational regulation of human IL-12. J. Immunol.164, 4752–4761 (2000). ArticleCASPubMed Google Scholar
Gillessen, S. et al. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur. J. Immunol.25, 200–206 (1995). ArticleCASPubMed Google Scholar
Heinzel, F. P., Hujer, A. M., Ahmed, F. N. & Rerko, R. M. In vivo production and function of IL-12 p40 homodimers. J. Immunol.158, 4381–4388 (1997). CASPubMed Google Scholar
Sousa, C. R. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin-12 by dendritic cells and their redistribution to T-cell areas. J. Exp. Med.186, 1819–1829 (1997). ArticlePubMed Central Google Scholar
Gazzinelli, R. T. et al. Parasite-induced IL-12 stimulates early IFN-γ synthesis and resistance during acute infection with Toxoplasma gondii. J. Immunol.153, 2533–2543 (1994). This study describes the central role of IL-12 in resistance to intracellular parasites, both in wild-type and SCID mice, and shows the participation of this cytokine in the mechanism of T-cell-independent macrophage activation. CASPubMed Google Scholar
Scharton-Kersten, T. M. et al. In the absence of endogenous IFN-γ, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J. Immunol.157, 4045–4054 (1996). CASPubMed Google Scholar
Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity13, 453–462 (2000). ArticleCASPubMed Google Scholar
Dalod, M. et al. Interferon-α/β and interleukin-12 responses to viral infections: pathways regulating dendritic-cell cytokine expression in vivo. J. Exp. Med.195, 517–528 (2002). This study reports that in response to virus infection in vivo, mouse type-I IFN-producing cells synthesize both IFN-α and IL-12, and that different subsets of DC produce IL-12 in response to bacterial and viral infections. ArticleCASPubMedPubMed Central Google Scholar
Ma, X., Neurath, M., Gri, G. & Trinchieri, G. Identification and characterization of a novel Ets-2-related nuclear complex implicated in the activation of the human interleukin-12 p40 gene promoter. J. Biol. Chem.272, 10389–10395 (1997). ArticleCASPubMed Google Scholar
Aliberti, J. et al. CCR5 provides a signal for microbial-induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol.1, 83–87 (2000). ArticleCAS Google Scholar
Grumont, R. et al. c-Rel regulates interleukin-12 p70 expression in CD8+ dendritic cells by specifically inducing p35 gene transcription. J. Exp. Med.194, 1021–1032 (2001). This paper identifies a differential requirement for c-REL for transcription of the genes encoding IL-12 p35 and p40 in DCs and macrophages, respectively. ArticleCASPubMedPubMed Central Google Scholar
Wolf, S. F. et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol.146, 3074–3081 (1991). This study reports the cloning of the genes encoding the two chains of IL-12. CASPubMed Google Scholar
Ma, X. & Trinchieri, G. Regulation of interleukin-12 production in antigen-presenting cells. Adv. Immunol.79, 55–92 (2001). ArticleCASPubMed Google Scholar
Snijders, A. et al. Regulation of bioactive IL-12 production in lipopolysaccharide-stimulated human monocytes is determined by the expression of the p35 subunit. J. Immunol.156, 1207–1212 (1996). CASPubMed Google Scholar
Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol.31, 3388–3393 (2001). ArticleCASPubMed Google Scholar
Kadowaki, N. et al. Subsets of human dendritic-cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194, 863–869 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hayes, M. P., Murphy, F. J. & Burd, P. R. Interferon-γ-dependent inducible expression of the human interleukin-12 p35 gene in monocytes initiates from a TATA-containing promoter distinct from the CpG-rich promoter active in Epstein–Barr virus-transformed lymphoblastoid cells. Blood91, 4645–4651 (1998). CASPubMed Google Scholar
Ma, X. et al. The interleukin-12 p40 gene promoter is primed by interferon-γ in monocytic cells. J. Exp. Med.183, 147–157 (1996). ArticleCASPubMed Google Scholar
D'Andrea, A., Ma, X., Aste-Amezaga, M., Paganin, C. & Trinchieri, G. Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral-blood mononuclear cells: priming for IL-12 and tumor-necrosis factor-α production. J. Exp. Med.181, 537–546 (1995). ArticleCASPubMed Google Scholar
Marshall, J. D., Robertson, S. E., Trinchieri, G. & Chehimi, J. Priming with IL-4 and IL-13 during HIV-1 infection restores in vitro IL-12 production by mononuclear cells of HIV-infected patients. J. Immunol.159, 5705–5714 (1997). CASPubMed Google Scholar
Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T-cell stimulatory capacity: T–T help via APC activation. J. Exp. Med.184, 747–752 (1996). ArticleCASPubMed Google Scholar
Kalinski, P. et al. IL-4 is a mediator of IL-12p70 induction by human TH2 cells: reversal of polarized TH2 phenotype by dendritic cells. J. Immunol.165, 1877–1881 (2000). ArticleCASPubMed Google Scholar
Kato, T., Hakamada, R., Yamane, H. & Nariuchi, H. Induction of IL-12 p40 messenger RNA expression and IL-12 production of macrophages via CD40–CD40 ligand interaction. J. Immunol.156, 3932–3938 (1996). CASPubMed Google Scholar
Vaidyanathan, H., Gentry, J. D., Weatherman, A., Schwartzbach, S. D. & Petro, T. M. Differential response of the murine IL-12 p35 gene to lipopolysaccharide compared with interferon-γ and CD40 ligation. Cytokine16, 1–9 (2001). ArticleCASPubMed Google Scholar
Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med.195, 327–333 (2002). ArticleCASPubMedPubMed Central Google Scholar
Aste-Amezaga, M., Ma, X., Sartori, A. & Trinchieri, G. Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J. Immunol.160, 5936–5944 (1998). CASPubMed Google Scholar
D'Andrea, A. et al. Interleukin-10 inhibits human lymphocyte IFN-γ production by suppressing natural killer cell stimulatory factor/interleukin-12 synthesis in accessory cells. J. Exp. Med.178, 1041–1048 (1993). ArticleCASPubMed Google Scholar
Jankovic, D. et al. In the absence of IL-12, CD4+ T-cell responses to intracellular pathogens fail to default to a TH2 pattern and are host protective in an IL-10(−/−) setting. Immunity16, 429–439 (2002). This study shows that during an infection, TH1 cells that produce low levels of IFN-γ can be generated in the absence of IL-12, but not in the absence of signalling through Toll-like receptors. The TH1 cells that are generated in the absence of IL-12 cannot protect the animals unless the animals are also deficient for IL-10. ArticleCASPubMed Google Scholar
Gazzinelli, R. T. et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol.157, 798–805 (1996). CASPubMed Google Scholar
Belkaid, Y. et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med.194, 1497–1506 (2001). ArticleCASPubMedPubMed Central Google Scholar
Du, C. & Sriram, S. Mechanism of inhibition of LPS-induced IL-12p40 production by IL-10 and TGF-β in ANA-1 cells. J. Leukocyte Biol.64, 92–97 (1998). ArticleCASPubMed Google Scholar
Cousens, L. P. et al. Two roads diverged: interferon α/β- and interleukin-12-mediated pathways in promoting T-cell interferon-γ responses during viral infection. J. Exp. Med.189, 1315–1328 (1999). This study indicates the roles of both IL-12 and IFN-α in IFN-γ production in the mouse, and the cross-regulation of these two cytokines. ArticleCASPubMedPubMed Central Google Scholar
Braun, M. C. & Kelsall, B. L. Regulation of interleukin-12 production by G-protein-coupled receptors. Microbes Infect.3, 99–107 (2001). ArticleCASPubMed Google Scholar
van der Pouw Kraan, T. C., Boeije, L. C., Smeenk, R. J., Wijdenes, J. & Aarden, L. A. Prostaglandin-E2 is a potent inhibitor of human interleukin-12 production. J. Exp. Med.181, 775–779 (1995). ArticleCASPubMed Google Scholar
Weinmann, A. S. et al. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nature Immunol.2, 51–57 (2001). ArticleCAS Google Scholar
Hayes, M. P., Wang, J. & Norcross, M. A. Regulation of interleukin-12 expression in human monocytes: selective priming by interferon-γ of lipopolysaccharide-inducible p35 and p40 genes. Blood86, 646–650 (1995). CASPubMed Google Scholar
Tone, Y. et al. Structure and chromosomal location of the mouse interleukin-12 p35 and p40 subunit genes. Eur. J. Immunol.26, 1222–1227 (1996). ArticleCASPubMed Google Scholar
Yoshimoto, T. et al. Molecular cloning and characterization of murine IL-12 genes. J. Immunol.156, 1082–1088 (1996). CASPubMed Google Scholar
Babik, J. M. et al. Expression of murine IL-12 is regulated by translational control of the p35 subunit. J. Immunol.162, 4069–4078 (1999). CASPubMed Google Scholar
Murphy, F. J., Hayes, M. P. & Burd, P. R. Disparate intracellular processing of human IL-12 preprotein subunits: atypical processing of the P35 signal peptide. J. Immunol.164, 839–847 (2000). ArticleCASPubMed Google Scholar
Trinchieri, G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol.70, 83–243 (1998). ArticleCASPubMed Google Scholar
Piccotti, J. R. et al. Alloantigen-reactive TH1 development in IL-12-deficient mice. J. Immunol.160, 1132–1138 (1998). CASPubMed Google Scholar
Cooper, A. M. et al. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J. Immunol.168, 1322–1327 (2002). ArticleCASPubMed Google Scholar
Becher, B., Durell, B. G. & Noelle, R. J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest.110, 493–497 (2002). ArticleCASPubMedPubMed Central Google Scholar
Perussia, B. et al. Natural killer (NK)-cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-αβ+, TCR-γδ+ T lymphocytes, and NK cells. J. Immunol.149, 3495–3502 (1992). CASPubMed Google Scholar
Kubin, M., Kamoun, M. & Trinchieri, G. Interleukin-12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J. Exp. Med.180, 211–222 (1994). ArticleCASPubMed Google Scholar
Murphy, E. E. et al. B7 and interleukin-12 cooperate for proliferation and interferon-γ production by mouse T helper clones that are unresponsive to B7 costimulation. J. Exp. Med.180, 223–231 (1994). References 70 and 71 show that in both humans and mice, IL-12 is strongly synergistic with co-stimulatory signals (such as B7–CD28 interactions) for inducing IFN-γ production by and proliferation of both resting and activated T cells, even in the absence of antigen. ArticleCASPubMed Google Scholar
Chan, S. H. et al. Induction of IFN-γ production by NK-cell stimulatory factor (NKSF): characterization of the responder cells and synergy with other inducers. J. Exp. Med.173, 869–879 (1991). ArticleCASPubMed Google Scholar
Hunter, C. A., Chizzonite, R. & Remington, J. S. IL-1β is required for IL-12 to induce production of IFN-γ by NK cells. A role for IL-1β in the T-cell-independent mechanism of resistance against intracellular pathogens. J. Immunol.155, 4347–4354 (1995). CASPubMed Google Scholar
Chan, S. H., Kobayashi, M., Santoli, D., Perussia, B. & Trinchieri, G. Mechanisms of IFN-γ induction by natural killer cell stimulatory factor (NKSF/IL-12): role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. J. Immunol.148, 92–98 (1992). CASPubMed Google Scholar
Walker, W., Aste-Amezaga, M., Kastelein, R. A., Trinchieri, G. & Hunter, C. A. IL-18 and CD28 use distinct molecular mechanisms to enhance NK-cell production of IL-12-induced IFN-γ. J. Immunol.162, 5894–5901 (1999). CASPubMed Google Scholar
Hodge, D. L., Martinez, A., Julias, J. G., Taylor, L. S. & Young, H. A. Regulation of nuclear γ-interferon gene expression by interleukin-12 (IL-12) and IL-2 represents a novel form of posttranscriptional control. Mol. Cell. Biol.22, 1742–1753 (2002). ArticleCASPubMedPubMed Central Google Scholar
Okamura, H., Tsutsui, H., Kashiwamura, S., Yoshimoto, T. & Nakanishi, K. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv. Immunol.70, 281–312 (1998). ArticleCASPubMed Google Scholar
Bazan, J. F., Timans, J. C. & Kastelein, R. A. A newly defined interleukin-1? Nature379, 591 (1996). ArticleCASPubMed Google Scholar
Barbulescu, K. et al. IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-γ promoter in primary CD4+ T lymphocytes. J. Immunol.160, 3642–3647 (1998). CASPubMed Google Scholar
Nakahira, M. et al. Synergy of IL-12 and IL-18 for IFN-γ gene expression: IL-12-induced STAT4 contributes to IFN-γ promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. J. Immunol.168, 1146–1153 (2002). ArticleCASPubMed Google Scholar
Chang, J. T., Segal, B. M., Nakanishi, K., Okamura, H. & Shevach, E. M. The costimulatory effect of IL-18 on the induction of antigen-specific IFN-γ production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor β2-subunit. Eur. J. Immunol.30, 1113–1119 (2000). ArticleCASPubMed Google Scholar
Nakanishi, K., Yoshimoto, T., Tsutsui, H. & Okamura, H. Interleukin-18 regulates both TH1 and TH2 responses. Annu. Rev. Immunol.19, 423–474 (2001). ArticleCASPubMed Google Scholar
Yang, J., Murphy, T. L., Ouyang, W. & Murphy, K. M. Induction of interferon-γ production in TH1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol.29, 548–555 (1999). ArticleCASPubMed Google Scholar
Wu, C. Y., Gadina, M., Wang, K., O'Shea, J. & Seder, R. A. Cytokine regulation of IL-12 receptor-β2 expression: differential effects on human T and NK cells. Eur. J. Immunol.30, 1364–1374 (2000). ArticleCASPubMed Google Scholar
Sareneva, T., Julkunen, I. & Matikainen, S. IFN-α and IL-12 induce IL-18 receptor gene expression in human NK and T cells. J. Immunol.165, 1933–1938 (2000). ArticleCASPubMed Google Scholar
Park, W. R. et al. CD28 costimulation is required not only to induce IL-12 receptor but also to render janus kinases/STAT4 responsive to IL-12 stimulation in TCR-triggered T cells. Eur. J. Immunol.31, 1456–1464 (2001). ArticleCASPubMed Google Scholar
Elloso, M. M. & Scott, P. Differential requirement of CD28 for IL-12 receptor expression and function in CD4+ and CD8+ T cells. Eur. J. Immunol.31, 384–395 (2001). ArticleCASPubMed Google Scholar
Carter, L. L. & Murphy, K. M. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon-γ production from CD4+ versus CD8+ T cells. J. Exp. Med.189, 1355–1360 (1999). ArticleCASPubMedPubMed Central Google Scholar
Afonso, L. C. et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science263, 235–237 (1994). ArticleCASPubMed Google Scholar
Seder, R. A., Gazzinelli, R., Sher, A. & Paul, W. E. Interleukin-12 acts directly on CD4+ T cells to enhance priming for interferon-γ production and diminishes interleukin-4 inhibition of such priming. Proc. Natl Acad. Sci. USA90, 10188–10192 (1993). ArticleCASPubMedPubMed Central Google Scholar
Manetti, R. et al. Interleukin-12 induces stable priming for interferon-γ (IFN-γ) production during differentiation of human T helper (TH) cells and transient IFN-γ production in established TH2-cell clones. J. Exp. Med.179, 1273–1283 (1994). ArticleCASPubMed Google Scholar
Gerosa, F. et al. Interleukin-12 primes human CD4 and CD8 T-cell clones for high production of both interferon-γ and interleukin-10. J. Exp. Med.183, 2559–2569 (1996). ArticleCASPubMed Google Scholar
Macatonia, S. E., Hsieh, C. S., Murphy, K. M. & O'Garra, A. Dendritic cells and macrophages are required for TH1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN-γ-dependent. Int. Immunol.5, 1119–1128 (1993). ArticleCASPubMed Google Scholar
Noble, A., Thomas, M. J. & Kemeny, D. M. Early TH1/TH2 cell polarization in the absence of IL-4 and IL-12: T-cell receptor signaling regulates the response to cytokines in CD4 and CD8 T cells. Eur. J. Immunol.31, 2227–2235 (2001). ArticleCASPubMed Google Scholar
Chen, Q. et al. Development of TH1-type immune responses requires the type I cytokine receptor TCCR. Nature407, 916–920 (2000). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell100, 655–669 (2000). This study identifies the transcription factor T-bet as an important element in TH1-cell commitment. ArticleCASPubMed Google Scholar
Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science292, 1907–1910 (2001). This paper shows that the appearance of T-bet in committed TH1 cells precedes exposure to IL-12, indicating that IL-12 might have a role more in the fixation and amplification of TH1 cells than in their commitment. ArticleCASPubMed Google Scholar
Heath, V. L. et al. Cutting edge: ectopic expression of the IL-12 receptor-β2 in developing and committed TH2 cells does not affect the production of IL-4 or induce the production of IFN-γ. J. Immunol.164, 2861–2865 (2000). ArticleCASPubMed Google Scholar
Lighvani, A. A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA98, 15137–15142 (2001). ArticleCASPubMedPubMed Central Google Scholar
Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol.3, 549–557 (2002). ArticleCAS Google Scholar
Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science295, 338–342 (2002). This study characterizes the role of T-bet in TH1-cell differentiation in vivo in mice that are genetically deficient for T-bet, identifying a requirement for T-bet for the differentiation of type-1 CD4+, but not CD8+, cells. ArticleCASPubMed Google Scholar
Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol.168, 5699–5708 (2002). ArticleCASPubMed Google Scholar
Wiekowski, M. T. et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol.166, 7563–7570 (2001). ArticleCASPubMed Google Scholar
Devergne, O. et al. A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J. Virol.70, 1143–1153 (1996). CASPubMedPubMed Central Google Scholar
Devergne, O., Coulomb-L'Hermine, A., Capel, F., Moussa, M. & Capron, F. Expression of Epstein–Barr virus-induced gene 3, an interleukin-12 p40-related molecule, throughout human pregnancy: involvement of syncytiotrophoblasts and extravillous trophoblasts. Am. J. Pathol.159, 1763–1776 (2001). ArticleCASPubMedPubMed Central Google Scholar
Christ, A. D. et al. An interleukin-12-related cytokine is up-regulated in ulcerative colitis but not in Crohn's disease. Gastroenterology115, 307–313 (1998). ArticleCASPubMed Google Scholar
Huang, Q. et al. The plasticity of dendritic-cell responses to pathogens and their components. Science294, 870–875 (2001). ArticleCASPubMed Google Scholar
Murphy, T. L., Cleveland, M. G., Kulesza, P., Magram, J. & Murphy, K. M. Regulation of interleukin-12 p40 expression through an NF-κB half-site. Mol. Cell. Biol.15, 5258–5267 (1995). ArticleCASPubMedPubMed Central Google Scholar
Plevy, S. E., Gemberling, J. H. M., Hsu, S., Dorner, A. J. & Smale, S. T. Multiple control elements mediate activation of the murine and human interleukin-12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol. Cell. Biol.17, 4572–4588 (1997). ArticleCASPubMedPubMed Central Google Scholar
Becker, C. et al. Regulation of IL-12 p40 promoter activity in primary human monocytes: roles of NF-κB, CCAAT/enhancer-binding protein-β, and PU. 1 and identification of a novel repressor element (GA-12) that responds to IL-4 and prostaglandin E(2). J. Immunol.167, 2608–2618 (2001). ArticleCASPubMed Google Scholar
Gorgoni, B., Maritano, D., Marthyn, P., Righi, M. & Poli, V. C/EBPβ gene inactivation causes both impaired and enhanced gene expression and inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J. Immunol.168, 4055–4062 (2002). ArticleCASPubMed Google Scholar
Gri, G., Savio, D., Trinchieri, G. & Ma, X. Synergistic regulation of the human interleukin-12 p40 promoter by NF-κB and Ets transcription factors in Epstein–Barr virus-transformed B cells and macrophages. J. Biol. Chem.273, 6431–6438 (1998). ArticleCASPubMed Google Scholar
Salkowski, C. A. et al. IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice. J. Immunol.163, 1529–1536 (1999). CASPubMed Google Scholar
Cappiello, M. G., Sutterwala, F. S., Trinchieri, G., Mosser, D. M. & Ma, X. Suppression of IL-12 transcription in macrophages following Fcγ receptor ligation. J. Immunol.166, 4498–4506 (2001). ArticleCAS Google Scholar
Wang, I. M. et al. An IFN-γ-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J. Immunol.165, 271–279 (2000). ArticleCASPubMed Google Scholar
D'Ambrosio, D. et al. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-κB downregulation in transcriptional repression of the p40 gene. J. Clin. Invest.101, 252–262 (1998). ArticleCASPubMedPubMed Central Google Scholar
Delgado, M. & Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit interleukin-12 transcription by regulating nuclear factor-κB and Ets activation. J. Biol. Chem.274, 31930–31940 (1999). ArticleCASPubMed Google Scholar
Maruo, S. et al. IL-12 produced by antigen-presenting cells induces IL-2-independent proliferation of T-helper cell clones. J. Immunol.156, 1748–1755 (1996). CASPubMed Google Scholar
Seder, R. A., Kelsall, B. L. & Jankovic, D. Differential roles for IL-12 in the maintenance of immune responses in infectious versus autoimmune disease. J. Immunol.157, 2745–2748 (1996). CASPubMed Google Scholar
Yap, G., Pesin, M. & Sher, A. Cutting edge: IL-12 is required for the maintenance of IFN-γ production in T cells mediating chronic resistance to the intracellular pathogen Toxoplasma gondii. J. Immunol.165, 628–631 (2000). ArticleCASPubMed Google Scholar
Park, A. Y., Hondowicz, B. D. & Scott, P. IL-12 is required to maintain a TH1 response during Leishmania major infection. J. Immunol.165, 896–902 (2000). ArticleCASPubMed Google Scholar
Orange, J. S., Wang, B., Terhorst, C. & Biron, C. A. Requirement for natural killer cell-produced interferon-γ in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin-12 administration. J. Exp. Med.182, 1045–1056 (1995). ArticleCASPubMed Google Scholar
Monteiro, J. M., Harvey, C. & Trinchieri, G. Role of interleukin-12 in primary influenza virus infection. J. Virol.72, 4825–4831 (1998). CASPubMedPubMed Central Google Scholar
Geng, Y., Berencsi, K., Gyulai, Z., Valgi-Nagy, T., Gonczol, E. & Trinchieri, G. Roles of interleukin-12 and interferon-γ in murine Chlamydia pneumoniae infection. Infect. Immun.68, 2245–2253 (2000). ArticleCASPubMedPubMed Central Google Scholar
Penttila, J. M. et al. Local immune responses to Chlamydia pneumoniae in the lungs of BALB/c mice during primary infection and reinfection. Infect. Immun.66, 5113–5118 (1998). CASPubMedPubMed Central Google Scholar
Rogge, L. et al. The role of Stat4 in species-specific regulation of TH-cell development by type I IFNs. J. Immunol.161, 6567–6574 (1998). CASPubMed Google Scholar
Farrar, J. D. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse Stat2. Nature Immunol.1, 65–69 (2000). ArticleCAS Google Scholar
Matikainen, S. et al. IFN-α and IL-18 synergistically enhance IFN-γ production in human NK cells: differential regulation of Stat4 activation and IFN-γ gene expression by IFN-α and IL-12. Eur. J. Immunol.31, 2236–2245 (2001). ArticleCASPubMed Google Scholar
Fallarino, F., Uyttenhove, C., Boon, T. & Gajewski, T. F. Endogenous IL-12 is necessary for rejection of P815 tumor variants in vivo. J. Immunol.156, 1095–1100 (1996). CASPubMed Google Scholar
Brunda, M. J. et al. Antitumor and antimetastatic activity of interleukin-12 against murine tumors. J. Exp. Med.178, 1223–1230 (1993). ArticleCASPubMed Google Scholar
Noguchi, Y., Jungbluth, A., Richards, E. C. & Old, L. J. Effect of interleukin-12 on tumor induction by 3-methylcholanthrene. Proc. Natl Acad. Sci. USA93, 11798–11801 (1996). ArticleCASPubMedPubMed Central Google Scholar
Nanni, P. et al. Combined allogeneic tumor-cell vaccination and systemic interleukin-12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med.194, 1195–1205 (2001). ArticleCASPubMedPubMed Central Google Scholar
Colombo, M. P. & Trinchieri, G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev.13, 155–168 (2002). ArticleCASPubMed Google Scholar
Voest, E. E. et al. Inhibition of angiogenesis in vivo by interleukin-12. J. Natl Cancer Inst.87, 581–586 (1995). ArticleCASPubMed Google Scholar
Yao, L. et al. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood96, 1900–1905 (2000). CASPubMed Google Scholar
Gee, M. S. et al. Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations. Cancer Res.61, 2974–2982 (2001). CASPubMed Google Scholar
Quaglino, E. et al. Immunological prevention of spontaneous tumors: a new prospect? Immunol. Lett.80, 75–79 (2002). ArticleCASPubMed Google Scholar
Taga, T. & Kishimoto, T. Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol.15, 797–819 (1997). ArticleCASPubMed Google Scholar
Kawashima, T., Kawasaki, H., Kitamura, T., Nojima, Y. & Morimoto, C. Interleukin-12 induces tyrosine phosphorylation of an 85-kDa protein associated with the interleukin-12 receptor-β1 subunit. Cell. Immunol.186, 39–44 (1998). ArticleCASPubMed Google Scholar