CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation (original) (raw)
Abela, G.S. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J. Clin. Lipidol.4, 156–164 (2010). ArticlePubMed Google Scholar
Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature451, 720–724 (2008). ArticleCASPubMedPubMed Central Google Scholar
Westermark, G.T., Westermark, P., Berne, C. & Korsgren, O. Nordic Network for Clinical Islet T. Widespread amyloid deposition in transplanted human pancreatic islets. N. Engl. J. Med.359, 977–979 (2008). ArticleCASPubMed Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ArticleCASPubMedPubMed Central Google Scholar
Masters, S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol.11, 897–904 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE5, e11765 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science267, 2000–2003 (1995). ArticleCASPubMed Google Scholar
Keller, M., Ruegg, A., Werner, S. & Beer, H.D. Active caspase-1 is a regulator of unconventional protein secretion. Cell132, 818–831 (2008). ArticleCASPubMed Google Scholar
Bauernfeind, F. et al. Reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol.187, 613–617 (2011). ArticleCASPubMed Google Scholar
Bauernfeind, F.G. et al. NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol.183, 787–791 (2009). ArticleCASPubMed Google Scholar
Embry, C.A., Franchi, L., Nunez, G. & Mitchell, T.C. Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci. Signal.4, ra28 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol.9, 847–856 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature469, 221–225 (2011). ArticleCASPubMed Google Scholar
Williams, K.J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol.15, 551–561 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lim, R.S. et al. Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. J. Lipid Res.52, 2177–2186 (2011). ArticleCASPubMedPubMed Central Google Scholar
Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature359, 322–325 (1992). ArticleCASPubMed Google Scholar
Kirschner, D.A. et al. Synthetic peptide homologous to β protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. USA84, 6953–6957 (1987). ArticleCASPubMedPubMed Central Google Scholar
Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature359, 325–327 (1992). ArticleCASPubMed Google Scholar
Clark, A. et al. Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet2, 231–234 (1987). ArticleCASPubMed Google Scholar
Cooper, G.J. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA84, 8628–8632 (1987). ArticleCASPubMedPubMed Central Google Scholar
Westermark, P. et al. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA84, 3881–3885 (1987). ArticleCASPubMedPubMed Central Google Scholar
Badman, M.K., Pryce, R.A., Charge, S.B., Morris, J.F. & Clark, A. Fibrillar islet amyloid polypeptide (amylin) is internalised by macrophages but resists proteolytic degradation. Cell Tissue Res.291, 285–294 (1998). ArticleCASPubMed Google Scholar
de Koning, E.J. et al. Macrophages and pancreatic islet amyloidosis. Amyloid5, 247–254 (1998). ArticleCASPubMed Google Scholar
Haass, C., Koo, E.H., Mellon, A., Hung, A.Y. & Selkoe, D.J. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature357, 500–503 (1992). ArticleCASPubMed Google Scholar
Hartmann, T. et al. Distinct sites of intracellular production for Alzheimer's disease Aβ40/42 amyloid peptides. Nat. Med.3, 1016–1020 (1997). ArticleCASPubMed Google Scholar
Silverstein, R.L. & Febbraio, M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal.2, re3 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Kunjathoor, V.V. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem.277, 49982–49988 (2002). ArticleCASPubMed Google Scholar
Moore, K.J. et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J. Biol. Chem.277, 47373–47379 (2002). ArticleCASPubMed Google Scholar
Wilkinson, K., Boyd, J.D., Glicksman, M., Moore, K.J. & El Khoury, J. A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J. Biol. Chem.286, 34914–34922 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stewart, C.R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol.11, 155–161 (2010). ArticleCASPubMed Google Scholar
Febbraio, M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest.105, 1049–1056 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moore, K.J. et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J. Clin. Invest.115, 2192–2201 (2005). ArticleCASPubMedPubMed Central Google Scholar
Goudriaan, J.R. et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J. Lipid Res.44, 2270–2277 (2003). ArticleCASPubMed Google Scholar
Hajri, T., Han, X.X., Bonen, A. & Abumrad, N.A. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J. Clin. Invest.109, 1381–1389 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kennedy, D.J. et al. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc. Res.89, 604–613 (2011). ArticleCASPubMed Google Scholar
Binder, C.J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med.9, 736–743 (2003). ArticleCASPubMed Google Scholar
Schmitz, G. & Grandl, M. Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim. Biophys. Acta1791, 524–539 (2009). ArticleCASPubMed Google Scholar
Rosenbaum, A.I. et al. Chemical screen to reduce sterol accumulation in Niemann-Pick C disease cells identifies novel lysosomal acid lipase inhibitors. Biochim. Biophys. Acta1791, 1155–1165 (2009). ArticleCASPubMedPubMed Central Google Scholar
Heneka, M.T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature493, 674–678 (2013). ArticleCASPubMed Google Scholar
Friedrich, R.P. et al. Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc. Natl. Acad. Sci. USA107, 1942–1947 (2010). ArticleCASPubMedPubMed Central Google Scholar
Walsh, D.M., Tseng, B.P., Rydel, R.E., Podlisny, M.B. & Selkoe, D.J. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry39, 10831–10839 (2000). ArticleCASPubMed Google Scholar
Miao, E.A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol.11, 1136–1142 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kamari, Y. et al. Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1α. Biochem. Biophys. Res. Commun.405, 197–203 (2011). ArticleCASPubMed Google Scholar
Kuchibhotla, S. et al. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc. Res.78, 185–196 (2008). ArticleCASPubMed Google Scholar
Chen, C.J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med.13, 851–856 (2007). ArticleCASPubMed Google Scholar
Rasmussen, L.T. & Seljelid, R. The modulatory effect of lipoproteins on the release of interleukin 1 by human peritoneal macrophages stimulated with β-1,3-D-polyglucose derivatives. Scand. J. Immunol.29, 477–484 (1989). ArticleCASPubMed Google Scholar
Thomas, C.E., Jackson, R.L., Ohlweiler, D.F. & Ku, G. Multiple lipid oxidation products in low density lipoproteins induce interleukin-1β release from human blood mononuclear cells. J. Lipid Res.35, 417–427 (1994). ArticleCASPubMed Google Scholar
Moyer, C.F., Sajuthi, D., Tulli, H. & Williams, J.K. Synthesis of IL-1α and IL-1β by arterial cells in atherosclerosis. Am. J. Pathol.138, 951–960 (1991). CASPubMedPubMed Central Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). ArticleCASPubMed Google Scholar
Boltz-Nitulescu, G. et al. Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant. J. Leuk. Biol.41, 83–91 (1987). ArticleCAS Google Scholar
Stuart, L.M. et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell Biol.170, 477–485 (2005). ArticleCASPubMedPubMed Central Google Scholar