Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature441, 231–234 (2006). ArticleCASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med.14, 282–289 (2008). ArticleCASPubMed Google Scholar
Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol.12, 21–27 (2011). ArticleCASPubMed Google Scholar
Colonna, M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity31, 15–23 (2009). ArticleCASPubMed Google Scholar
Sonnenberg, G.F. et al. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity34, 122–134 (2011). ArticleCASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445, 648–651 (2007). ArticleCASPubMed Google Scholar
Mundy, R. et al. Citrobacter rodentium of mice and man. Cell. Microbiol.7, 1697–1706 (2005). ArticleCASPubMed Google Scholar
Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457, 722–725 (2009). ArticleCASPubMed Google Scholar
Eberl, G. et al. An essential function for the nuclear receptor RORγ(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol.5, 64–73 (2004). ArticleCASPubMed Google Scholar
Sanos, S.L. et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol.10, 83–91 (2009). ArticleCASPubMed Google Scholar
Tumanov, A.V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe10, 44–53 (2011). ArticleCASPubMedPubMed Central Google Scholar
Manta, C. et al. CX3CR1+ macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol.6, 177–188 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Kinnebrew, M.A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity36, 276–287 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bennett, C.L. & Clausen, B.E. DC ablation in mice: promises, pitfalls, and challenges. Trends Immunol.28, 525–531 (2007). ArticleCASPubMed Google Scholar
Meredith, M.M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med.209, 1153–1165 (2012). ArticleCASPubMedPubMed Central Google Scholar
Satpathy, A.T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med.209, 1135–1152 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science322, 1097–1100 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lewis, K.L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity35, 780–791 (2011). ArticleCASPubMedPubMed Central Google Scholar
Swiecki, M. et al. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8+ T cell accrual. Immunity33, 955–966 (2010). ArticleCASPubMedPubMed Central Google Scholar
Torti, N. et al. Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur. J. Immunol.41, 2612–2618 (2011). ArticleCASPubMed Google Scholar
Mashayekhi, M. et al. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity35, 249–259 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cervantes-Barragan, L. et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc. Natl. Acad. Sci. USA109, 3012–3017 (2012). ArticleCASPubMedPubMed Central Google Scholar
Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity31, 502–512 (2009). ArticleCASPubMed Google Scholar
Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity21, 279–288 (2004). ArticleCASPubMed Google Scholar
Jakubzick, C. et al. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J. Exp. Med.205, 2839–2850 (2008). ArticleCASPubMedPubMed Central Google Scholar
Randolph, G.J., Ochando, J. & Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol.26, 293–316 (2008). ArticleCASPubMed Google Scholar
McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood95, 3489–3497 (2000). ArticleCASPubMed Google Scholar
Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C–C chemokine receptor 2 knockout mice. J. Clin. Invest.100, 2552–2561 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zigmond, E. et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity37, 1076–1090 (2012). ArticleCASPubMed Google Scholar
Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science315, 107–111 (2007). ArticleCASPubMed Google Scholar
Radtke, F., Fasnacht, N. & MacDonald, H.R. Notch signaling in the immune system. Immunity32, 14–27 (2010). ArticleCASPubMed Google Scholar
Edelson, B.T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med.207, 823–836 (2010). ArticleCASPubMedPubMed Central Google Scholar
McDonald, K.G. et al. Dendritic cells produce CXCL13 and participate in the development of murine small intestine lymphoid tissues. Am. J. Pathol.176, 2367–2377 (2010). ArticleCASPubMedPubMed Central Google Scholar
Caton, M.L., Smith-Raska, M.R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen. J. Exp. Med.204, 1653–1664 (2007). ArticleCASPubMedPubMed Central Google Scholar
Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol.9, 676–683 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity22, 439–450 (2005). ArticleCASPubMed Google Scholar
Summers deLuca, L. & Gommerman, J.L. Fine-tuning of dendritic cell biology by the TNF superfamily. Nat. Rev. Immunol.12, 339–351 (2012). ArticlePubMedCAS Google Scholar
Fütterer, A. et al. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity9, 59–70 (1998). ArticlePubMed Google Scholar
Bajaña, S. et al. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol.189, 3368–3377 (2012). ArticlePubMedCAS Google Scholar
Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol.7, 773–782 (2006). ArticleCASPubMed Google Scholar
Manieri, N.A. et al. Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology143, 110–121 (2012). ArticleCASPubMed Google Scholar
Brown, S.L. et al. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J. Clin. Invest.117, 258–269 (2007). ArticleCASPubMedPubMed Central Google Scholar
Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nat. Immunol.12, 949–958 (2011). ArticleCASPubMed Google Scholar
Lee, J.S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol.13, 144–151 (2012). ArticleCAS Google Scholar
Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol.12, 941–948 (2011). ArticleCASPubMed Google Scholar
Wang, Y. et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity32, 403–413 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Kim, Y.G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity34, 769–780 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rivollier, A. et al. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med.209, 139–155 (2012). ArticleCASPubMedPubMed Central Google Scholar
Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity37, 1061–1075 (2012). ArticleCASPubMedPubMed Central Google Scholar
Steinman, R.M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol.30, 1–22 (2011). ArticlePubMedCAS Google Scholar
Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol.9, 1091–1094 (2008). ArticleCASPubMed Google Scholar
Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol.14, 637–645 (2002). ArticleCASPubMed Google Scholar
Yu, H. et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron31, 713–726 (2001). ArticleCASPubMed Google Scholar
Yin, L. et al. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science291, 2162–2165 (2001). ArticleCASPubMed Google Scholar
Keskintepe, L. et al. Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Res.16, 751–758 (2007). ArticleCASPubMed Google Scholar
Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res.23, 5080–5081 (1995). ArticleCASPubMedPubMed Central Google Scholar
Robben, P.M. et al. Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype. J. Immunol.172, 3686–3694 (2004). ArticleCASPubMed Google Scholar
Akashi, K. et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). ArticleCASPubMed Google Scholar
Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol.8, 1207–1216 (2007). ArticleCASPubMed Google Scholar