CD1d-lipid antigen recognition by the γδ TCR (original) (raw)
Godfrey, D.I., Rossjohn, J. & McCluskey, J. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Immunity28, 304–314 (2008). CASPubMed Google Scholar
Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature491, 717–723 (2012). ArticleCASPubMed Google Scholar
Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L. & Godfrey, D.I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol.12, 845–857 (2012). CASPubMedPubMed Central Google Scholar
Brenner, M.B. et al. Identification of a putative second T-cell receptor. Nature322, 145–149 (1986). CASPubMed Google Scholar
Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of gamma delta T cells to immunology. Nat. Rev. Immunol.13, 88–100 (2013). CASPubMedPubMed Central Google Scholar
Schild, H. et al. The nature of major histocompatibility complex recognition by gamma delta T cells. Cell76, 29–37 (1994). CASPubMed Google Scholar
Crowley, M.P. et al. A population of murine gammadelta T cells that recognize an inducible MHC class Ib molecule. Science287, 314–316 (2000). CASPubMed Google Scholar
Wingren, C., Crowley, M.P., Degano, M., Chien, Y. & Wilson, I.A. Crystal structure of a gammadelta T cell receptor ligand T22: a truncated MHC-like fold. Science287, 310–314 (2000). CASPubMed Google Scholar
Willcox, C.R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat. Immunol.13, 872–879 (2012). CASPubMed Google Scholar
Constant, P. et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science264, 267–270 (1994). CASPubMed Google Scholar
Vavassori, S. et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human [gamma][delta] T cells. Nat. Immunol.14, 908–916 (2013). CASPubMed Google Scholar
Russano, A.M. et al. Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted gamma delta T cells. J. Allergy Clin. Immunol.117, 1178–1184 (2006). CASPubMed Google Scholar
Dieude, M. et al. Cardiolipin binds to CD1d and stimulates CD1d-restricted gammadelta T cells in the normal murine repertoire. J. Immunol.186, 4771–4781 (2011). CASPubMed Google Scholar
Bai, L. et al. The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vdelta1 TCR. Eur. J. Immunol.42, 2505–2510 (2012). CASPubMedPubMed Central Google Scholar
Girardi, E. et al. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat. Immunol.13, 851–856 (2012). CASPubMedPubMed Central Google Scholar
Patel, O. et al. Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat. Immunol.13, 857–863 (2012). CASPubMed Google Scholar
Xu, B. et al. Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA. Proc. Natl. Acad. Sci. USA108, 2414–2419 (2011). CASPubMedPubMed Central Google Scholar
Allison, T.J., Winter, C.C., Fournie, J.J., Bonneville, M. & Garboczi, D.N. Structure of a human gammadelta T-cell antigen receptor. Nature411, 820–824 (2001). CASPubMed Google Scholar
Li, H. et al. Structure of the Vdelta domain of a human gammadelta T-cell antigen receptor. Nature391, 502–506 (1998). CASPubMed Google Scholar
Adams, E.J., Chien, Y.H. & Garcia, K.C. Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science308, 227–231 (2005). CASPubMed Google Scholar
Adams, E.J., Strop, P., Shin, S., Chien, Y.H. & Garcia, K.C. An autonomous CDR3delta is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by gammadelta T cells. Nat. Immunol.9, 777–784 (2008). CASPubMedPubMed Central Google Scholar
Wun, K.S. et al. A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR. J. Exp. Med.205, 939–949 (2008). CASPubMedPubMed Central Google Scholar
Kjer-Nielsen, L. et al. A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. J. Exp. Med.203, 661–673 (2006). CASPubMedPubMed Central Google Scholar
Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature448, 44–49 (2007). CASPubMed Google Scholar
Mallevaey, T. et al. A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity34, 315–326 (2011). CASPubMedPubMed Central Google Scholar
Matulis, G. et al. Innate-like control of human iNKT cell autoreactivity via the hypervariable CDR3beta loop. PLoS Biol.8, e1000402 (2010). PubMedPubMed Central Google Scholar
Pellicci, D.G. et al. Recognition of beta-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat. Immunol.12, 827–833 (2011). CASPubMedPubMed Central Google Scholar
Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science279, 1166–1172 (1998). CASPubMed Google Scholar
Koch, M. et al. The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat. Immunol.6, 819–826 (2005). CASPubMed Google Scholar
Godfrey, D.I., McCluskey, J. & Rossjohn, J. CD1d antigen presentation: treats for NKT cells. Nat. Immunol.6, 754–756 (2005). CASPubMed Google Scholar
Russano, A.M. et al. CD1-restricted recognition of exogenous and self-lipid antigens by duodenal gamma delta+ T lymphocytes. J. Immunol.178, 3620–3626 (2007). CASPubMed Google Scholar
Cerundolo, V., Silk, J.D., Masri, S.H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol.9, 28–38 (2009). CASPubMed Google Scholar
Wieland Brown, L.C. et al. Production of alpha-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol.11, e1001610 (2013). PubMedPubMed Central Google Scholar
Brennan, P.J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol.12, 1202–1211 (2011). CASPubMedPubMed Central Google Scholar
Brigl, M. et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med.208, 1163–1177 (2011). CASPubMedPubMed Central Google Scholar
Nick, S. et al. T cell receptor gamma delta repertoire is skewed in cerebrospinal fluid of multiple sclerosis patients: molecular and functional analyses of antigen-reactive gamma delta clones. Eur. J. Immunol.25, 355–363 (1995). CASPubMed Google Scholar
Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.192, 741–754 (2000). CASPubMedPubMed Central Google Scholar
Kedzierska, K., Turner, S.J. & Doherty, P.C. Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. Proc. Natl. Acad. Sci. USA101, 4942–4947 (2004). CASPubMedPubMed Central Google Scholar
Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single ′self-cleaving′ 2A peptide-based retroviral vector. Nat. Biotechnol.22, 589–594 (2004). CASPubMed Google Scholar
Heemskerk, M.H. et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood102, 3530–3540 (2003). CASPubMed Google Scholar
Shima, E.A. et al. Gene encoding the alpha chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. Proc. Natl. Acad. Sci. USA83, 3439–3443 (1986). CASPubMedPubMed Central Google Scholar
Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr.62, 1243–1250 (2006). PubMed Google Scholar
McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr.63, 32–41 (2007). CASPubMed Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). CASPubMedPubMed Central Google Scholar
Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA98, 10037–10041 (2001). CASPubMedPubMed Central Google Scholar
Holst, M., Baker, N.A. & Wang, F. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples. J. Comput. Chem.21, 1319–1342 (2000). CAS Google Scholar