The development and maintenance of resident macrophages (original) (raw)
van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ.46, 845–852 (1972). CASPubMedPubMed Central Google Scholar
Katz, S.I., Tamaki, K. & Sachs, D.H. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature282, 324–326 (1979). CASPubMed Google Scholar
Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science311, 83–87 (2006). CASPubMed Google Scholar
Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol.8, 578–583 (2007). CASPubMed Google Scholar
Auffray, C. et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med.206, 595–606 (2009). CASPubMedPubMed Central Google Scholar
Gordon, S. & Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity32, 593–604 (2010). CASPubMed Google Scholar
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol.3, 23–35 (2003). CASPubMed Google Scholar
Murray, P.J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity41, 14–20 (2014). CASPubMedPubMed Central Google Scholar
Schultze, J.L., Freeman, T., Hume, D.A. & Latz, E. A transcriptional perspective on human macrophage biology. Semin. Immunol.27, 44–50 (2015). CASPubMed Google Scholar
Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science336, 86–90 (2012). ArticleCASPubMed Google Scholar
Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol.3, 1135–1141 (2002). CASPubMedPubMed Central Google Scholar
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science330, 841–845 (2010). CASPubMedPubMed Central Google Scholar
Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity38, 792–804 (2013). CASPubMed Google Scholar
Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity38, 79–91 (2013). CASPubMed Google Scholar
Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity40, 91–104 (2014). CASPubMedPubMed Central Google Scholar
Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature518, 547–551 (2015). PubMed Google Scholar
Takahashi, K., Yamamura, F. & Naito, M. Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J. Leukoc. Biol.45, 87–96 (1989). CASPubMed Google Scholar
Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res.117, 145–152 (1999). CASPubMed Google Scholar
Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med.206, 3089–3100 (2009). CASPubMedPubMed Central Google Scholar
Davies, L.C. et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol.41, 2155–2164 (2011). CASPubMed Google Scholar
Lawson, L.J., Perry, V.H. & Gordon, S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience48, 405–415 (1992). CASPubMed Google Scholar
Kanitakis, J., Morelon, E., Petruzzo, P., Badet, L. & Dubernard, J.M. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp. Dermatol.20, 145–146 (2011). CASPubMed Google Scholar
Bouwens, L., Baekeland, M., De Zanger, R. & Wisse, E. Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology6, 718–722 (1986). CASPubMed Google Scholar
Bain, C.C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol.15, 929–937 (2014). CASPubMedPubMed Central Google Scholar
Bllériot, C. et al. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity42, 145–158 (2015). Google Scholar
Naito, M., Takahashi, K. & Nishikawa, S. Development, differentiation, and maturation of macrophages in the fetal mouse liver. J. Leukoc. Biol.48, 27–37 (1990). CASPubMed Google Scholar
Takahashi, K., Takahashi, H., Naito, M., Sato, T. & Kojima, M. Ultrastructural and functional development of macrophages in the dermal tissue of rat fetuses. Cell Tissue Res.232, 539–552 (1983). CASPubMed Google Scholar
Deimann, W. & Fahimi, H.D. Peroxidase cytochemistry and ultrastructure of resident macrophages in fetal rat liver. A developmental study. Dev. Biol.66, 43–56 (1978). CASPubMed Google Scholar
Bertrand, J.Y. et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl. Acad. Sci. USA102, 134–139 (2005). CASPubMed Google Scholar
Bertrand, J.Y. et al. Three pathways to mature macrophages in the early mouse yolk sac. Blood106, 3004–3011 (2005). CASPubMed Google Scholar
McGrath, K.E. et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep.11, 1892–1904 (2015). CASPubMedPubMed Central Google Scholar
Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development126, 5073–5084 (1999). CASPubMed Google Scholar
Ueno, H. & Weissman, I.L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell11, 519–533 (2006). CASPubMed Google Scholar
Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature464, 112–115 (2010). CASPubMed Google Scholar
Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell84, 321–330 (1996). CASPubMed Google Scholar
Le Guyader, D. et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood111, 132–141 (2008). CASPubMed Google Scholar
England, S.J., McGrath, K.E., Frame, J.M. & Palis, J. Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus. Blood117, 2708–2717 (2011). CASPubMedPubMed Central Google Scholar
Chen, M.J. et al. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell9, 541–552 (2011). CASPubMedPubMed Central Google Scholar
Chen, M.J., Yokomizo, T., Zeigler, B.M., Dzierzak, E. & Speck, N.A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature457, 887–891 (2009). CASPubMedPubMed Central Google Scholar
Lux, C.T. et al. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood111, 3435–3438 (2008). CASPubMedPubMed Central Google Scholar
Rampon, C. & Huber, P. Multilineage hematopoietic progenitor activity generated autonomously in the mouse yolk sac: analysis using angiogenesis-defective embryos. Int. J. Dev. Biol.47, 273–280 (2003). CASPubMed Google Scholar
Kieusseian, A., Brunet de la Grange, P., Burlen-Defranoux, O., Godin, I. & Cumano, A. Immature hematopoietic stem cells undergo maturation in the fetal liver. Development139, 3521–3530 (2012). CASPubMed Google Scholar
Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci.16, 273–280 (2013). CASPubMed Google Scholar
Sumner, R., Crawford, A., Mucenski, M. & Frampton, J. Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene19, 3335–3342 (2000). CASPubMed Google Scholar
Bartůnek, P., Kralova, J., Blendinger, G., Dvorak, M. & Zenke, M. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. Oncogene22, 1927–1935 (2003). PubMed Google Scholar
Davidson, C.J., Tirouvanziam, R., Herzenberg, L.A. & Lipsick, J.S. Functional evolution of the vertebrate Myb gene family: B-Myb, but neither A-Myb nor C-Myb, complements Drosophila Myb in hemocytes. Genetics169, 215–229 (2005). CASPubMedPubMed Central Google Scholar
Cumano, A. & Godin, I. Ontogeny of the hematopoietic system. Annu. Rev. Immunol.25, 745–785 (2007). CASPubMed Google Scholar
Bertrand, J.Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature464, 108–111 (2010). CASPubMedPubMed Central Google Scholar
Boisset, J.C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature464, 116–120 (2010). CASPubMed Google Scholar
Zovein, A.C. et al. Vascular remodeling of the vitelline artery initiates extravascular emergence of hematopoietic clusters. Blood116, 3435–3444 (2010). CASPubMed Google Scholar
Delassus, S. & Cumano, A. Circulation of hematopoietic progenitors in the mouse embryo. Immunity4, 97–106 (1996). CASPubMed Google Scholar
Mucenski, M.L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell65, 677–689 (1991). CASPubMed Google Scholar
Mukouyama, Y. et al. Hematopoietic cells in cultures of the murine embryonic aorta-gonad-mesonephros region are induced by c-Myb. Curr. Biol.9, 833–836 (1999). CASPubMed Google Scholar
Soza-Ried, C., Hess, I., Netuschil, N., Schorpp, M. & Boehm, T. Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved. Proc. Natl. Acad. Sci. USA107, 17304–17308 (2010). CASPubMedPubMed Central Google Scholar
Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity18, 699–711 (2003). CASPubMed Google Scholar
Müller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F. & Dzierzak, E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity1, 291–301 (1994). PubMed Google Scholar
Tober, J., McGrath, K.E. & Palis, J. Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb. Blood111, 2636–2639 (2008). CASPubMedPubMed Central Google Scholar
Yokomizo, T. et al. Requirement of Runx1/AML1/PEBP2aB for the generation of haematopoietic cells from endothelial cells. Genes Cells6, 13–23 (2001). CASPubMed Google Scholar
Qian, B.Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature475, 222–225 (2011). CASPubMedPubMed Central Google Scholar
Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA92, 6991–6995 (1995). CASPubMedPubMed Central Google Scholar
Hoeffel, G. et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity42, 665–678 (2015). CASPubMedPubMed Central Google Scholar
Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med.6, 1167–1181 (2012). Google Scholar
Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med.210, 1977–1992 (2013). CASPubMedPubMed Central Google Scholar
Sheng, J., Ruedl, C. & Karjalainen, K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity43, 382–393 (2015). CASPubMed Google Scholar
Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature518, 542–546 (2015). CASPubMed Google Scholar
Ema, M. et al. Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo. Blood108, 4018–4024 (2006). CASPubMed Google Scholar
Garceau, V. et al. The development and maintenance of the mononuclear phagocyte system of the chick is controlled by signals from the macrophage colony-stimulating factor receptor. BMC Biol.13, 12 (2015). PubMedPubMed Central Google Scholar
Buza-Vidas, N. et al. FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood118, 1544–1548 (2011). CASPubMed Google Scholar
Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med.211, 2151–2158 (2014). CASPubMedPubMed Central Google Scholar
Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity31, 502–512 (2009). CASPubMed Google Scholar
Hickey, W.F., Vass, K. & Lassmann, H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol.51, 246–256 (1992). CASPubMed Google Scholar
Yamada, M., Naito, M. & Takahashi, K. Kupffer cell proliferation and glucan-induced granuloma formation in mice depleted of blood monocytes by strontium-89. J. Leukoc. Biol.47, 195–205 (1990). CASPubMed Google Scholar
Golde, D.W., Byers, L.A. & Finley, T.N. Proliferative capacity of human alveolar macrophage. Nature247, 373–375 (1974). CASPubMed Google Scholar
Sawyer, R.T., Strausbauch, P.H. & Volkman, A. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab. Invest.46, 165–170 (1982). CASPubMed Google Scholar
Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science332, 1284–1288 (2011). CASPubMedPubMed Central Google Scholar
Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity43, 92–106 (2015). CASPubMed Google Scholar
Aziz, A., Soucie, E., Sarrazin, S. & Sieweke, M.H. MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science326, 867–871 (2009). CASPubMed Google Scholar
Jenkins, S.J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med.210, 2477–2491 (2013). CASPubMedPubMed Central Google Scholar
van Furth, R. & Diesselhoff-den Dulk, M.M. Dual origin of mouse spleen macrophages. J. Exp. Med.160, 1273–1283 (1984). CASPubMed Google Scholar
Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M. & Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci.14, 1142–1149 (2011). CASPubMed Google Scholar
Gomez-Nicola, D., Fransen, N.L., Suzzi, S. & Perry, V.H. Regulation of microglial proliferation during chronic neurodegeneration. J. Neurosci.33, 2481–2493 (2013). CASPubMedPubMed Central Google Scholar
Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell159, 1327–1340 (2014). CASPubMedPubMed Central Google Scholar
Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell159, 1312–1326 (2014). CASPubMedPubMed Central Google Scholar
Yamamoto, T. et al. Macrophage colony-stimulating factor is indispensable for repopulation and differentiation of Kupffer cells but not for splenic red pulp macrophages in osteopetrotic (op/op) mice after macrophage depletion. Cell Tissue Res.332, 245–256 (2008). CASPubMed Google Scholar
Butovsky, O. et al. Identification of a unique TGF-b-dependent molecular and functional signature in microglia. Nat. Neurosci.17, 131–143 (2014). CASPubMed Google Scholar
Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol.13, 753–760 (2012). CASPubMedPubMed Central Google Scholar
Borkowski, T.A., Letterio, J.J., Farr, A.G. & Udey, M.C. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med.184, 2417–2422 (1996). CASPubMedPubMed Central Google Scholar
Lieschke, G.J. et al. Mice lacking both macrophage- and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Blood84, 27–35 (1994). CASPubMed Google Scholar
Shibata, Y. et al. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity15, 557–567 (2001). CASPubMed Google Scholar
Happle C. et al. Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci. Transl. Med.6, 250ra113 (2014). PubMed Google Scholar
Willinger, T. et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc. Natl. Acad. Sci. USA108, 2390–2395 (2011). CASPubMedPubMed Central Google Scholar
Akagawa, K.S., Kamoshita, K. & Tokunaga, T. Effects of granulocyte-macrophage colony-stimulating factor and colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages. J. Immunol.141, 3383–3390 (1988). CASPubMed Google Scholar
Chen, B.D., Mueller, M. & Chou, T.H. Role of granulocyte/macrophage colony-stimulating factor in the regulation of murine alveolar macrophage proliferation and differentiation. J. Immunol.141, 139–144 (1988). CASPubMed Google Scholar
Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell157, 832–844 (2014). CASPubMedPubMed Central Google Scholar
Rosas, M. et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science344, 645–648 (2014). CASPubMedPubMed Central Google Scholar
Kohyama, M. et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature457, 318–321 (2009). CASPubMed Google Scholar
A-Gonzalez, N. et al. The nuclear receptor LXRa controls the functional specialization of splenic macrophages. Nat. Immunol.14, 831–839 (2013). CASPubMedPubMed Central Google Scholar