Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science259, 87–91 (1993). ArticleCASPubMed Google Scholar
Donath, M.Y., Dalmas, É., Sauter, N.S. & Böni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab.17, 860–872 (2013). ArticleCASPubMed Google Scholar
Ehses, J.A., Böni-Schnetzler, M., Faulenbach, M. & Donath, M.Y. Macrophages, cytokines and beta-cell death in Type 2 diabetes. Biochem. Soc. Trans.36, 340–342 (2008). ArticleCASPubMed Google Scholar
Donath, M.Y. & Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol.11, 98–107 (2011). ArticleCASPubMed Google Scholar
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). ArticleCASPubMed Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med.17, 179–188 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol.12, 408–415 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab.12, 593–605 (2010). ArticleCASPubMedPubMed Central Google Scholar
Maedler, K. et al. Glucose-induced beta cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest.110, 851–860 (2002). ArticleCASPubMedPubMed Central Google Scholar
Masters, S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol.11, 897–904 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol.11, 136–140 (2010). ArticleCASPubMed Google Scholar
Stienstra, R. et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA108, 15324–15329 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ehses, J.A. et al. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc. Natl. Acad. Sci. USA106, 13998–14003 (2009). ArticleCASPubMedPubMed Central Google Scholar
Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med.356, 1517–1526 (2007). ArticleCASPubMed Google Scholar
van Asseldonk, E.J. et al. Treatment with Anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab.96, 2119–2126 (2011). ArticleCASPubMed Google Scholar
Cavelti-Weder, C. et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care35, 1654–1662 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hensen, J., Howard, C.P., Walter, V. & Thuren, T. Impact of interleukin-1β antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab.39, 524–531 (2013). ArticleCASPubMed Google Scholar
Sloan-Lancaster, J. et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care36, 2239–2246 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gubser, P.M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol.14, 1064–1072 (2013). ArticleCASPubMed Google Scholar
Fox, C.J., Hammerman, P.S. & Thompson, C.B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol.5, 844–852 (2005). ArticleCASPubMed Google Scholar
Macintyre, A.N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab.20, 61–72 (2014). ArticleCASPubMedPubMed Central Google Scholar
Freemerman, A.J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem.289, 7884–7896 (2014). ArticleCASPubMedPubMed Central Google Scholar
Böni-Schnetzler, M. et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology150, 5218–5229 (2009). ArticlePubMedCAS Google Scholar
Benner, C. et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics15, 620 (2014). ArticlePubMedPubMed Central Google Scholar
Bendtzen, K. et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science232, 1545–1547 (1986). ArticleCASPubMed Google Scholar
Mandrup-Poulsen, T. et al. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans. Diabetologia29, 63–67 (1986). ArticleCASPubMed Google Scholar
Zawalich, W.S. & Zawalich, K.C. Interleukin 1 is a potent stimulator of islet insulin secretion and phosphoinositide hydrolysis. Am. J. Physiol.256, E19–E24 (1989). CASPubMed Google Scholar
Donath, M.Y., Böni-Schnetzler, M., Ellingsgaard, H., Halban, P.A. & Ehses, J.A. Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol. Metab.21, 261–267 (2010). ArticleCASPubMed Google Scholar
Caumo, A. & Luzi, L. First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am. J. Physiol. Endocrinol. Metab.287, E371–E385 (2004). ArticleCASPubMed Google Scholar
Baggio, L.L. & Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology132, 2131–2157 (2007). ArticleCASPubMed Google Scholar
Van Oostrom, A.J., Sijmonsma, T.P., Rabelink, T.J., Van Asbeck, B.S. & Cabezas, M.C. Postprandial leukocyte increase in healthy subjects. Metabolism52, 199–202 (2003). ArticleCASPubMed Google Scholar
Herieka, M. & Erridge, C. High-fat meal induced postprandial inflammation. Mol. Nutr. Food Res.58, 136–146 (2014). ArticleCASPubMed Google Scholar
Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ.14, 1583–1589 (2007). ArticlePubMedCAS Google Scholar
Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell157, 832–844 (2014). ArticleCASPubMedPubMed Central Google Scholar
Platell, C., Cooper, D., Papadimitriou, J.M. & Hall, J.C. The omentum. World J. Gasteroenterol.6, 169–176 (2000). Google Scholar
Shrivastava, P. & Bhatia, M. Essential role of monocytes and macrophages in the progression of acute pancreatitis. World J. Gasteroenterol.16, 3995–4002 (2010). ArticleCAS Google Scholar
Cani, P.D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes56, 1761–1772 (2007). ArticleCASPubMed Google Scholar
Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab.23, 324–334 (2016). ArticleCASPubMed Google Scholar
Corbett, J.A., Wang, J.L., Sweetland, M.A., Lancaster, J.R. Jr. & McDaniel, M.L. Interleukin 1β induces the formation of nitric oxide by beta-cells purified from rodent islets of Langerhans. Evidence for the beta-cell as a source and site of action of nitric oxide. J. Clin. Invest.90, 2384–2391 (1992). ArticleCASPubMedPubMed Central Google Scholar
Hajmrle, C. et al. Interleukin-1 signaling contributes to acute islet compensation. J. Clin. Invest.1, e86055 (2016). Google Scholar
Greenwood, R.H., Mahler, R.F. & Hales, C.N. Improvement in insulin secretion in diabetes after diazoxide. Lancet1, 444–447 (1976). ArticleCASPubMed Google Scholar
Olefsky, J.M. & Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol.72, 219–246 (2010). ArticleCASPubMed Google Scholar
Mauer, J. et al. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. PLoS Genet.6, e1000938 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Costa Rosa, L.F., Safi, D.A., Cury, Y. & Curi, R. The effect of insulin on macrophage metabolism and function. Cell Biochem. Funct.14, 33–42 (1996). ArticleCASPubMed Google Scholar
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med.373, 2117–2128 (2015). ArticleCASPubMed Google Scholar
Ravassard, P. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J. Clin. Invest.121, 3589–3597 (2011). ArticleCASPubMedPubMed Central Google Scholar
Horai, R. et al. Production of mice deficient in genes for interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 receptor antagonist shows that IL-1β is crucial in turpentine-induced fever development and glucocorticoid secretion. J. Exp. Med.187, 1463–1475 (1998). ArticleCASPubMedPubMed Central Google Scholar
Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Förster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res.8, 265–277 (1999). ArticleCASPubMed Google Scholar
Preitner, F. et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Invest.113, 635–645 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wueest, S. et al. Fas (CD95) expression in myeloid cells promotes obesityinduced muscle insulin resistance. EMBO Mol. Med.6, 43–56 (2014). ArticleCASPubMed Google Scholar
Caiazzo, R. et al. Quantitative in vivo islet potency assay in normoglycemic nude mice correlates with primary graft function after clinical transplantation. Transplantation86, 360–363 (2008). ArticlePubMed Google Scholar