- Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).
Article CAS PubMed Google Scholar
- Bradley, L. M., Haynes, L. & Swain, S. L. IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol. 26, 172–176 (2005).
Article CAS PubMed Google Scholar
- Benczik, M. & Gaffen, S. L. The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunol. Invest. 33, 109–142 (2004).
Article CAS PubMed Google Scholar
- Hammerman, P. S., Fox, C. J. & Thompson, C. B. Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends. Biochem. Sci. 29, 586–592 (2004).
Article CAS PubMed Google Scholar
- Plas, D. R., Rathmell, J. C. & Thompson, C. B. Homeostatic control of lymphocyte survival: potential origins and implications. Nature Immunol. 3, 515–521 (2002).
Article CAS Google Scholar
- Plas, D. R. & Thompson, C. B. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab. 13, 75–78 (2002).
Article PubMed Google Scholar
- Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).
Article CAS Google Scholar
- Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).
Article CAS PubMed Google Scholar
- Sbarra, A. J. & Karnovsky, M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234, 1355–1362 (1959).
CAS PubMed Google Scholar
- Borregaard, N. & Herlin, T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550–557 (1982).
Article CAS PubMed PubMed Central Google Scholar
- Borregaard, N. & Kragballe, K. The oxygen-dependent antibody-dependent cell-mediated cytotoxicity of human monocytes and neutrophils. Adv. Exp. Med. Biol. 141, 71–84 (1982).
Article CAS PubMed Google Scholar
- Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003). Using a gene-knockout-mouse approach, this paper shows that the oxygen sensor hypoxia-inducible factor 1α (HIF1α) is an essential regulator of the glycolytic capacity of myeloid cells in the anaerobic microenvironment of inflamed tissue. In the absence of HIF1α, the cellular ATP pool is reduced in activated monocytes, leading to their functional impairment.
Article CAS PubMed PubMed Central Google Scholar
- Bauer, D. E. et al. Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J. 18, 1303–1305 (2004).
Article CAS PubMed Google Scholar
- Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).
Article CAS PubMed Google Scholar
- Krauss, S., Brand, M. D. & Buttgereit, F. Signaling takes a breath — new quantitative perspectives on bioenergetics and signal transduction. Immunity 15, 497–502 (2001).
Article CAS PubMed Google Scholar
- Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. & Sheu, S. S. Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am. J. Physiol. Cell Physiol. 287, C817–C833 (2004).
Article CAS PubMed Google Scholar
- Frauwirth, K. A. & Thompson, C. B. Regulation of T lymphocyte metabolism. J. Immunol. 172, 4661–4665 (2004).
Article CAS PubMed Google Scholar
- Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A. & Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).
Article CAS PubMed Google Scholar
- Buttgereit, F., Burmester, G. R. & Brand, M. D. Bioenergetics of immune functions: fundamental and therapeutic aspects. Immunol. Today 21, 192–199 (2000). In a series of papers (references 19, 24 and 25), the research group of Martin Brand uses quiescent rat thymocytes or thymocytes activated by mitogens such as concanavalin A in an attempt to trace the major oxygen- and/or ATP-consuming processes, including protein synthesis and cation transport.
Article CAS PubMed Google Scholar
- Gray, J. V. et al. 'Sleeping beauty': quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187–206 (2004). This Review is highly recommended. It summarizes much of the literature concerning the regulated entry to, and exit from, quiescence in yeast.
Article CAS PubMed PubMed Central Google Scholar
- Greiner, E. F., Guppy, M. & Brand, K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J. Biol. Chem. 269, 31484–31490 (1994).
CAS PubMed Google Scholar
- Brand, K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem. J. 228, 353–361 (1985).
Article CAS PubMed PubMed Central Google Scholar
- Brand, K., Williams, J. F. & Weidemann, M. J. Glucose and glutamine metabolism in rat thymocytes. Biochem. J. 221, 471–475 (1984). In references 21–23, the research group of Karl Brand provides some of the first evidence, for lymphocytes, that most of the glucose imported into quiescent rat thymocytes is fully oxidized to carbon dioxide, whereas proliferating thymocytes excrete large amounts of lactate.
Article CAS PubMed PubMed Central Google Scholar
- Buttgereit, F., Brand, M. D. & Muller, M. ConA induced changes in energy metabolism of rat thymocytes. Biosci. Rep. 12, 381–386 (1992).
Article CAS PubMed Google Scholar
- Buttgereit, F. & Brand, M. D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312, 163–167 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).
Article CAS PubMed Google Scholar
- Perl, A., Gergely, P. Jr, Puskas, F. & Banki, K. Metabolic switches of T-cell activation and apoptosis. Antioxid. Redox Signal. 4, 427–443 (2002).
Article CAS PubMed Google Scholar
- Brand, K. et al. Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes. Eur. J. Biochem. 172, 695–702 (1988).
Article CAS PubMed Google Scholar
- Buzzai, M. et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation. Oncogene 24, 4165–4173 (2005).
Article CAS PubMed Google Scholar
- Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).
Article CAS PubMed Google Scholar
- Miller, E. S., Klinger, J. C., Akin, C., Koebel, D. A. & Sonnenfeld, G. Inhibition of murine splenic T lymphocyte proliferation by 2-deoxy-D-glucose-induced metabolic stress. J. Neuroimmunol. 52, 165–173 (1994).
Article CAS PubMed Google Scholar
- MacDonald, H. R. & Cerottini, J. C. Inhibition of T cell-mediated cytolysis by 2-deoxy-D-glucose (2-DG): differential effect of 2-DG on effector cells isolated early or late after alloantigenic stimulation in vitro. J. Immunol. 122, 1067–1072 (1979). Both references 31 and 32 provide evidence that affecting glycolysis (using the non-metabolizable analogue 2-deoxyglucose) can adversely affect the T-cell-dependent immune response by inhibiting proliferation.
CAS PubMed Google Scholar
- Inoki, K., Corradetti, M. N. & Guan, K. L. Dysregulation of the TSC–mTOR pathway in human disease. Nature Genet. 37, 19–24 (2005).
Article CAS PubMed Google Scholar
- Song, G., Ouyang, G. & Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59–71 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Carling, D. AMP-activated protein kinase: balancing the scales. Biochimie 87, 87–91 (2005).
Article CAS PubMed Google Scholar
- Sekulic, A. et al. A direct linkage between the phosphoinositide 3-kinase–AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60, 3504–3513 (2000).
CAS PubMed Google Scholar
- Li, Y., Corradetti, M. N., Inoki, K. & Guan, K. L. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem. Sci. 29, 32–38 (2004).
Article PubMed CAS Google Scholar
- Edinger, A. L., Linardic, C. M., Chiang, G. G., Thompson, C. B. & Abraham, R. T. Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res. 63, 8451–8460 (2003).
CAS PubMed Google Scholar
- Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).
Article CAS PubMed Google Scholar
- Plas, D. R., Talapatra, S., Edinger, A. L., Rathmell, J. C. & Thompson, C. B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276, 12041–12048 (2001).
Article CAS PubMed Google Scholar
- Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRAD α/β and MO25 α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. [online] 2, 28 (2003).
Article PubMed PubMed Central Google Scholar
- Wilson, W. A. & Roach, P. J. Nutrient-regulated protein kinases in budding yeast. Cell 111, 155–158 (2002).
Article CAS PubMed Google Scholar
- Hardie, D. G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855 (1998).
Article CAS PubMed Google Scholar
- Jhun, B. S. et al. AICAR suppresses IL-2 expression through inhibition of GSK-3 phosphorylation and NF-AT activation in Jurkat T cells. Biochem. Biophys. Res. Commun. 332, 339–346 (2005).
Article CAS PubMed Google Scholar
- Stefanelli, C. et al. Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 243, 821–826 (1998).
Article CAS PubMed Google Scholar
- Princiotta, M. F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343–354 (2003). In this study, the authors provide a quantitative assessment of the energy cost of regulated protein turnover, using MHC-class-I-dependent antigen presentation in murine L929 and myeloid cells as a model system.
Article CAS PubMed Google Scholar
- Yewdell, J. W. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 11, 294–297 (2001). This is a Review on the topic of reference 47 by the same research group.
Article CAS PubMed Google Scholar
- Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).
Article CAS PubMed Google Scholar
- Edinger, A. L. & Thompson, C. B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell 13, 2276–2288 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Kanai, Y. & Hediger, M. A. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur. J. Pharmacol. 479, 237–247 (2003).
Article CAS PubMed Google Scholar
- Edinger, A. L., Cinalli, R. M. & Thompson, C. B. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev. Cell 5, 571–582 (2003).
Article CAS PubMed Google Scholar
- Kimball, S. R. & Jefferson, L. S. Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochem. Biophys. Res. Commun. 313, 423–427 (2004).
Article CAS PubMed Google Scholar
- Reiter, A. K., Anthony, T. G., Anthony, J. C., Jefferson, L. S. & Kimball, S. R. The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver. Int. J. Biochem. Cell Biol. 36, 2169–2179 (2004).
Article CAS PubMed Google Scholar
- Mordier, S., Deval, C., Bechet, D., Tassa, A. & Ferrara, M. Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J. Biol. Chem. 275, 29900–29906 (2000).
Article CAS PubMed Google Scholar
- Proud, C. G. Role of mTOR signalling in the control of translation initiation and elongation by nutrients. Curr. Top. Microbiol. Immunol. 279, 215–244 (2004).
CAS PubMed Google Scholar
- Land, S. C. & Hochachka, P. W. Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis. Am. J. Physiol. 266, C1028–C1036 (1994). This paper describes a study that was carried out in turtle hepatocytes to quantify the portion of cellular ATP that is devoted to regulated protein degradation under aerobic and anaerobic conditions.
Article CAS PubMed Google Scholar
- Liu, J. O. The yins of T cell activation. Sci STKE [online] 2005, re1 (2005). This is an excellent, recent review of the transcription factors that negatively regulate T-cell activation, several of which potentiate T-cell quiescence by promoting 'active' suppression of the cell-cycle machinery.
- Lin, L., Hron, J. D. & Peng, S. L. Regulation of NF-κB, TH activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).
Article CAS PubMed Google Scholar
- Buckley, A. F., Kuo, C. T. & Leiden, J. M. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nature Immunol. 2, 698–704 (2001).
Article CAS Google Scholar
- Kuo, C. T., Veselits, M. L. & Leiden, J. M. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).
Article CAS PubMed Google Scholar
- Duan, L., Reddi, A. L., Ghosh, A., Dimri, M. & Band, H. The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling. Immunity 21, 7–17 (2004).
Article CAS PubMed Google Scholar
- Dutcher, J. P. Mammalian target of rapamycin (mTOR) inhibitors. Curr. Oncol. Rep. 6, 111–115 (2004).
Article PubMed Google Scholar
- Grube, E. & Buellesfeld, L. Rapamycin analogs for stent-based local drug delivery. Everolimus- and tacrolimus-eluting stents. Herz 29, 162–166 (2004).
Article PubMed Google Scholar
- Ussetti, P., Carreno, M. C., de Pablo, A., Gamez, P. & Varela, A. Rapamycin and chronic lung rejection. J. Heart Lung Transplant. 23, 917–918 (2004).
Article PubMed Google Scholar
- Trosch, F. et al. First experience with rapamycin-based immunosuppression to improve kidney function after heart transplantation. Thorac. Cardiovasc. Surg. 52, 163–168 (2004).
Article CAS PubMed Google Scholar
- Kay, J. E., Kromwel, L., Doe, S. E. & Denyer, M. Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology 72, 544–549 (1991).
CAS PubMed PubMed Central Google Scholar
- Luo, H., Duguid, W., Chen, H., Maheu, M. & Wu, J. The effect of rapamycin on T cell development in mice. Eur. J. Immunol. 24, 692–701 (1994).
Article CAS PubMed Google Scholar
- Damoiseaux, J. G., Beijleveld, L. J., Schuurman, H. J. & van Breda Vriesman, P. J. Effect of in vivo rapamycin treatment on de novo T-cell development in relation to induction of autoimmune-like immunopathology in the rat. Transplantation 62, 994–1001 (1996).
Article CAS PubMed Google Scholar
- Tian, L., Lu, L., Yuan, Z., Lamb, J. R. & Tam, P. K. Acceleration of apoptosis in CD4+CD8+ thymocytes by rapamycin accompanied by increased CD4+CD25+ T cells in the periphery. Transplantation 77, 183–189 (2004).
Article CAS PubMed Google Scholar
- Fox, C. J., Hammerman, P. S. & Thompson, C. B. The Pim kinases control rapamycin-resistant T cell survival and activation. J. Exp. Med. 201, 259–266 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748 (2005). This study provided the first clue that part of the immunosuppressive ability of rapamycin in vivo involves the selective expansion of CD4+CD25+ regulatory T-cell populations.
Article CAS PubMed Google Scholar
- Fuge, E. K., Braun, E. L. & Werner-Washburne, M. Protein synthesis in long-term stationary-phase cultures of Saccharomyces cerevisiae. J. Bacteriol. 176, 5802–5813 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Barbet, N. C. et al. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7, 25–42 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Thomsson, E., Svensson, M. & Larsson, C. Rapamycin pre-treatment preserves viability, ATP level and catabolic capacity during carbon starvation of Saccharomyces cerevisiae. Yeast 22, 615–623 (2005).
Article CAS PubMed Google Scholar
- Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).
Article CAS PubMed Google Scholar
- Hammerman, P. S., Fox, C. J., Birnbaum, M. J. & Thompson, C. B. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 105, 4477–4483 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Hammerman, P. S. et al. Lymphocyte transformation by Pim-2 is dependent on nuclear factor-κB activation. Cancer Res. 64, 8341–8348 (2004).
Article CAS PubMed Google Scholar
- Fox, C. J. et al. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev. 17, 1841–1854 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Bachmann, M. & Moroy, T. The serine/threonine kinase Pim-1. Int. J. Biochem. Cell Biol. 37, 726–730 (2005).
Article CAS PubMed Google Scholar
- Jacobs, M. D. et al. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. J. Biol. Chem. 280, 13728–13734 (2005).
Article CAS PubMed Google Scholar
- Qian, K. C. et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J. Biol. Chem. 280, 6130–6137 (2005).
Article CAS PubMed Google Scholar
- Kumar, A. et al. Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma. J. Mol. Biol. 348, 183–193 (2005).
Article CAS PubMed Google Scholar
- Leduc, I. et al. The Pim-1 kinase stimulates maturation of TCRβ-deficient T cell progenitors: implications for the mechanism of Pim-1 action. Int. Immunol. 12, 1389–1396 (2000).
Article CAS PubMed Google Scholar
- Pearson, R. & Weston, K. c-Myb regulates the proliferation of immature thymocytes following β-selection. EMBO J. 19, 6112–6120 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Angelini, G. et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA 99, 1491–1496 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Droge, W., Eck, H. P., Gmunder, H. & Mihm, S. Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. Am. J. Med. 91, 140S–144S (1991).
Article CAS PubMed Google Scholar
- Gmunder, H., Eck, H. P. & Droge, W. Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur. J. Biochem. 201, 113–117 (1991).
Article CAS PubMed Google Scholar
- Edinger, A. L. & Thompson, C. B. Antigen-presenting cells control T cell proliferation by regulating amino acid availability. Proc. Natl Acad. Sci. USA 99, 1107–1109 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Gmunder, H., Eck, H. P., Benninghoff, B., Roth, S. & Droge, W. Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell. Immunol 129, 32–46 (1990).
Article CAS PubMed Google Scholar
- Bauer, T. M. et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl. Int. 18, 95–100 (2005).
Article CAS PubMed Google Scholar
- Munn, D. H., Sharma, M. D. & Mellor, A. L. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172, 4100–4110 (2004).
Article CAS PubMed Google Scholar
- Mellor, A. L. et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int. Immunol. 16, 1391–1401 (2004).
Article CAS PubMed Google Scholar
- Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005). Recently, the induction of IDO expression in activated dendritic cells was found to suppress T-cell proliferation by activating the stress-responsive kinase GCN2. GCN2 is also activated by amino-acid withdrawal and can affect both cap-dependent and -independent translation by regulating EIF2α phosphorylation.
Article CAS PubMed Google Scholar
- Grossman, Z., Min, B., Meier-Schellersheim, M. & Paul, W. E. Concomitant regulation of T-cell activation and homeostasis. Nature Rev. Immunol. 4, 387–395 (2004).
Article CAS Google Scholar
- Seder, R. A., Germain, R. N., Linsley, P. S. & Paul, W. E. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon γ production. J. Exp. Med. 179, 299–304 (1994).
Article CAS PubMed Google Scholar
- Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).
Article CAS PubMed Google Scholar
- Rocha, B. & Tanchot, C. Towards a cellular definition of CD8+ T-cell memory: the role of CD4+ T-cell help in CD8+ T-cell responses. Curr. Opin. Immunol. 16, 259–263 (2004).
Article CAS PubMed Google Scholar
- Fontenot, J. D. & Rudensky, A. Y. Molecular aspects of regulatory T cell development. Semin. Immunol. 16, 73–80 (2004).
Article CAS PubMed Google Scholar
- Fehervari, Z. & Sakaguchi, S. Development and function of CD25+CD4+ regulatory T cells. Curr. Opin. Immunol. 16, 203–208 (2004).
Article CAS PubMed Google Scholar
- Bayer, A. L., Yu, A., Adeegbe, D. & Malek, T. R. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J. Exp. Med. 201, 769–777 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).
Article CAS Google Scholar