Interstitial leukocyte migration and immune function (original) (raw)
von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med.343, 1020–1034 (2000). CASPubMed Google Scholar
Miller, M.J., Hejazi, A.S., Wei, S.H., Cahalan, M.D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. USA101, 998–1003 (2004). CASPubMedPubMed Central Google Scholar
Miller, M.J., Safrina, O., Parker, I. & Cahalan, M.D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med.200, 847–856 (2004). CASPubMedPubMed Central Google Scholar
Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature427, 154–159 (2004). CASPubMed Google Scholar
Bhakta, N.R., Oh, D.Y. & Lewis, R.S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol.6, 143–151 (2005). CASPubMed Google Scholar
Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol.7, 678–689 (2007). CASPubMed Google Scholar
Heit, B. et al. PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils. Nat. Immunol.9, 743–752 (2008). CASPubMed Google Scholar
Mackay, C.R. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol.9, 988–998 (2008). CASPubMed Google Scholar
Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol.16, 14–23 (2004). CASPubMed Google Scholar
Wolf, K., Muller, R., Borgmann, S., Brocker, E.B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood102, 3262–3269 (2003). CASPubMed Google Scholar
Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol.9, 893–904 (2007). CASPubMed Google Scholar
Friedl, P. et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res.55, 4557–4560 (1995). CASPubMed Google Scholar
Friedl, P., Hegerfeldt, Y. & Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol.48, 441–449 (2004). CASPubMed Google Scholar
Friedl, P. & Brocker, E.B. TCR triggering on the move: diversity of T-cell interactions with antigen-presenting cells. Immunol. Rev.186, 83–89 (2002). CASPubMed Google Scholar
Wei, X., Tromberg, B.J. & Cahalan, M.D. Mapping the sensitivity of T cells with an optical trap: polarity and minimal number of receptors for Ca2+ signaling. Proc. Natl. Acad. Sci. USA96, 8471–8476 (1999). CASPubMedPubMed Central Google Scholar
Stanley, P. et al. Intermediate-affinity LFA-1 binds alpha-actinin-1 to control migration at the leading edge of the T cell. EMBO J.27, 62–75 (2008). CASPubMed Google Scholar
Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity4, 421–430 (1996). CASPubMed Google Scholar
Beemiller, P., Hoppe, A.D. & Swanson, J.A. A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcγ receptor-mediated phagocytosis. PLoS Biol.4, e162 (2006). PubMedPubMed Central Google Scholar
Pytowski, B., Maxfield, F.R. & Michl, J. Fc and C3bi receptors and the differentiation antigen BH2-Ag are randomly distributed in the plasma membrane of locomoting neutrophils. J. Cell Biol.110, 661–668 (1990). CASPubMed Google Scholar
Servant, G., Weiner, O.D., Neptune, E.R., Sedat, J.W. & Bourne, H.R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell10, 1163–1178 (1999). CASPubMedPubMed Central Google Scholar
Fernandez-Segura, E., Garcia, J.M. & Campos, A. Topographic distribution of CD18 integrin on human neutrophils as related to shape changes and movement induced by chemotactic peptide and phorbol esters. Cell. Immunol.171, 120–125 (1996). CASPubMed Google Scholar
Friedl, P., Entschladen, F., Conrad, C., Niggemann, B. & Zanker, K.S. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol.28, 2331–2343 (1998). CASPubMed Google Scholar
Laskin, D.L., Kimura, T., Sakakibara, S., Riley, D.J. & Berg, R.A. Chemotactic activity of collagen-like polypeptides for human peripheral blood neutrophils. J. Leukoc. Biol.39, 255–266 (1986). CASPubMed Google Scholar
Senior, R.M., Gresham, H.D., Griffin, G.L., Brown, E.J. & Chung, A.E. Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its Arg-Gly-Asp (RGD) domain and the leukocyte response integrin. J. Clin. Invest.90, 2251–2257 (1992). CASPubMedPubMed Central Google Scholar
Adair-Kirk, T.L. et al. A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J. Immunol.171, 398–406 (2003). CASPubMed Google Scholar
Thelen, M. & Stein, J.V. How chemokines invite leukocytes to dance. Nat Immunol.9, 953–959 (2008). CASPubMed Google Scholar
Marone, R., Cmiljanovic, V., Giese, B. & Wymann, M.P. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim. Biophys. Acta1784, 159–185 (2008). CASPubMed Google Scholar
Stambolic, V. & Woodgett, J.R. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol.16, 461–466 (2006). CASPubMed Google Scholar
Enomoto, A. et al. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev. Cell9, 389–402 (2005). CASPubMed Google Scholar
Rommel, C., Camps, M. & Ji, H. PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol.7, 191–201 (2007). CASPubMed Google Scholar
Nombela-Arrieta, C. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity21, 429–441 (2004). CASPubMed Google Scholar
Ibarra, N., Pollitt, A. & Insall, R.H. Regulation of actin assembly by SCAR/WAVE proteins. Biochem. Soc. Trans.33, 1243–1246 (2005). CASPubMed Google Scholar
Machesky, L.M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl. Acad. Sci. USA96, 3739–3744 (1999). CASPubMedPubMed Central Google Scholar
Bendix, P.M. et al. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J.94, 3126–3136 (2008). CASPubMedPubMed Central Google Scholar
Eddy, R.J., Pierini, L.M. & Maxfield, F.R. Microtubule asymmetry during neutrophil polarization and migration. Mol. Biol. Cell13, 4470–4483 (2002). CASPubMedPubMed Central Google Scholar
Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature453, 51–55 (2008). PubMed Google Scholar
Ferguson, G.J. et al. PI(3)Kγ has an important context-dependent role in neutrophil chemokinesis. Nat. Cell Biol.9, 86–91 (2007). CASPubMed Google Scholar
Li, Z. et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol.7, 399–404 (2005). CASPubMed Google Scholar
Campello, S. et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med.203, 2879–2886 (2006). CASPubMedPubMed Central Google Scholar
Friedl, P. & Brocker, E.B. T cell migration in three-dimensional extracellular matrix: guidance by polarity and sensations. Dev. Immunol.7, 249–266 (2000). CASPubMedPubMed Central Google Scholar
Mandeville, J.T., Lawson, M.A. & Maxfield, F.R. Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J. Leukoc. Biol.61, 188–200 (1997). CASPubMed Google Scholar
Wolf, K. & Friedl, P. Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin. Exp. Metastasis published online, doi: 10.1007/s10585-008-9190-2 (4 July 2008).
Leppert, D., Waubant, E., Galardy, R., Bunnett, N.W. & Hauser, S.L. T cell gelatinases mediate basement membrane transmigration in vitro. J. Immunol.154, 4379–4389 (1995). CASPubMed Google Scholar
Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med.203, 1519–1532 (2006). CASPubMedPubMed Central Google Scholar
McQuibban, G.A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science289, 1202–1206 (2000). CASPubMed Google Scholar
Murphy, G., Murthy, A. & Khokha, R. Clipping, shedding and RIPping keep immunity on cue. Trends Immunol.29, 75–82 (2008). CASPubMed Google Scholar
Friedl, P. & Wolf, K. Proteolytic and non-proteolytic migration in tumor cells and leukocytes. Biochem. Soc. Symp.70 277–285 (2003). CAS Google Scholar
Pals, S.T., de Gorter, D.J. & Spaargaren, M. Lymphoma dissemination: the other face of lymphocyte homing. Blood110, 3102–3111 (2007). CASPubMed Google Scholar
Gunzer, M., Kampgen, E., Brocker, E.B., Zanker, K.S. & Friedl, P. Migration of dendritic cells in 3D-collagen lattices. Visualisation of dynamic interactions with the substratum and the distribution of surface structures via a novel confocal reflection imaging technique. Adv. Exp. Med. Biol.417, 97–103 (1997). CASPubMed Google Scholar
De Nichilo, M.O. & Burns, G.F. Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate alpha v integrin expression on cultured human macrophages. Proc. Natl. Acad. Sci. USA90, 2517–2521 (1993). CASPubMedPubMed Central Google Scholar
McNally, A.K. & Anderson, J.M. β1 and β2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am. J. Pathol.160, 621–630 (2002). CASPubMedPubMed Central Google Scholar
Chung, A., Gao, Q. & Kao, W.J. Macrophage matrix metalloproteinase-2/-9 gene and protein expression following adhesion to ECM-derived multifunctional matrices via integrin complexation. Biomaterials28, 285–298 (2007). CASPubMed Google Scholar
Bromley, S.K., Mempel, T.R. & Luster, A.D. Orchestrating the orchestrators: chemokine control of T cell trafficking. Nat. Immunol.9, 970–980 (2008). CASPubMed Google Scholar
Dangerfield, J., Larbi, K.Y., Huang, M.T., Dewar, A. & Nourshargh, S. PECAM-1 (CD31) homophilic interaction up-regulates α6β1 on transmigrated neutrophils in vivo and plays a functional role in the ability of α6 integrins to mediate leukocyte migration through the perivascular basement membrane. J. Exp. Med.196, 1201–1211 (2002). CASPubMedPubMed Central Google Scholar
Young, R.E., Voisin, M.B., Wang, S., Dangerfield, J. & Nourshargh, S. Role of neutrophil elastase in LTB4-induced neutrophil transmigration in vivo assessed with a specific inhibitor and neutrophil elastase deficient mice. Br. J. Pharmacol.151, 628–637 (2007). CASPubMedPubMed Central Google Scholar
El-Shabrawi, Y., Walch, A., Hermann, J., Egger, G. & Foster, C.S. Inhibition of MMP-dependent chemotaxis and amelioration of experimental autoimmune uveitis with a selective metalloproteinase-2 and -9 inhibitor. J. Neuroimmunol.155, 13–20 (2004). CASPubMed Google Scholar
Agrawal, S. et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med.203, 1007–1019 (2006). CASPubMedPubMed Central Google Scholar
Steadman, R. et al. Human neutrophils do not degrade major basement membrane components during chemotactic migration. Int. J. Biochem. Cell Biol.29, 993–1004 (1997). PubMed Google Scholar
Thureson-Klein, A., Hedqvist, P. & Lindbom, L. Leukocyte diapedesis and plasma extravasation after leukotriene B4: lack of structural injury to the endothelium. Tissue Cell18, 1–12 (1986). CASPubMed Google Scholar
Roussel, E. & Gingras, M.C. Transendothelial migration induces rapid expression on neutrophils of granule-release VLA6 used for tissue infiltration. J. Leukoc. Biol.62, 356–362 (1997). CASPubMed Google Scholar
Berg, L.P. et al. Functional consequences of noncognate interactions between CD4+ memory T lymphocytes and the endothelium. J. Immunol.168, 3227–3234 (2002). CASPubMed Google Scholar
Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity25, 989–1001 (2006). CASPubMedPubMed Central Google Scholar
Lindquist, R.L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol.5, 1243–1250 (2004). CASPubMed Google Scholar
Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell99, 23–33 (1999). CASPubMed Google Scholar
Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature406, 309–314 (2000). CASPubMed Google Scholar
Mempel, T.R., Scimone, M.L., Mora, J.R. & von Andrian, U.H. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol.16, 406–417 (2004). CASPubMed Google Scholar
Friedman, R.S., Jacobelli, J. & Krummel, M.F. Surface-bound chemokines capture and prime T cells for synapse formation. Nat. Immunol.7, 1101–1108 (2006). CASPubMed Google Scholar
Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol.8, 1076–1085 (2007). CASPubMed Google Scholar
Dustin, M.L., Bromley, S.K., Kan, Z., Peterson, D.A. & Unanue, E.R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA94, 3909–3913 (1997). CASPubMedPubMed Central Google Scholar
Gunzer, M. et al. A spectrum of biophysical interaction modes between T cells and different antigen-presenting cells during priming in 3-D collagen and in vivo. Blood104, 2801–2809 (2004). CASPubMed Google Scholar
Friedl, P., den Boer, A.T. & Gunzer, M. Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol.5, 532–545 (2005). CASPubMed Google Scholar
Shakhar, G. et al. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat. Immunol.6, 707–714 (2005). CASPubMedPubMed Central Google Scholar
Wei, S.H. et al. Ca2+ signals in CD4+ T cells during early contacts with antigen-bearing dendritic cells in lymph node. J. Immunol.179, 1586–1594 (2007). CASPubMed Google Scholar
Henrickson, S.E. et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol.9, 282–291 (2008). CASPubMedPubMed Central Google Scholar
Lu, T.T. & Cyster, J.G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science297, 409–412 (2002). CASPubMed Google Scholar
Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S. & Davis, M.M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol.7, 247–255 (2006). CASPubMed Google Scholar
Sims, T.N. et al. Opposing effects of PKCθ and WASp on symmetry breaking and relocation of the immunological synapse. Cell129, 773–785 (2007). CASPubMed Google Scholar
Nobile, C. et al. Cognate CD4+ T-cell-dendritic cell interactions induce migration of immature dendritic cells through dissolution of their podosomes. Blood111, 3579–3590 (2008). CASPubMed Google Scholar
Chieppa, M., Rescigno, M., Huang, A.Y. & Germain, R.N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med.203, 2841–2852 (2006). CASPubMedPubMed Central Google Scholar
Schon, M.P., Schon, M., Parker, C.M. & Williams, I.R. Dendritic epidermal T cells (DETC) are diminished in integrin αE(CD103)-deficient mice. J. Invest. Dermatol.119, 190–193 (2002). PubMed Google Scholar
Cepek, K.L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αE β7 integrin. Nature372, 190–193 (1994). CASPubMed Google Scholar
Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol.3, e150 (2005). PubMedPubMed Central Google Scholar
Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature440, 890–895 (2006). CASPubMed Google Scholar
Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity13, 323–332 (2000). CASPubMed Google Scholar
Cahalan, M.D. & Parker, I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu. Rev. Immunol.26, 585–626 (2008). CASPubMedPubMed Central Google Scholar
Pham, T.H., Okada, T., Matloubian, M., Lo, C.G. & Cyster, J.G. S1P1 receptor signaling overrides retention mediated by Gαi–coupled receptors to promote T cell egress. Immunity28, 122–133 (2008). CASPubMed Google Scholar
Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol.178, 3912–3917 (2007). CASPubMed Google Scholar
Schwab, J.M., Chiang, N., Arita, M. & Serhan, C.N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature447, 869–874 (2007). CASPubMedPubMed Central Google Scholar
Van Lint, P. & Libert, C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J. Leukoc. Biol.82, 1375–1381 (2007). CASPubMed Google Scholar
Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol.23, 127–159 (2005). CASPubMed Google Scholar
Stoitzner, P., Pfaller, K., Stossel, H. & Romani, N. A close-up view of migrating Langerhans cells in the skin. J. Invest. Dermatol.118, 117–125 (2002). CASPubMed Google Scholar
Cinamon, G. et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol.5, 713–720 (2004). CASPubMed Google Scholar
Debes, G.F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol.6, 889–894 (2005). CASPubMedPubMed Central Google Scholar
Ledgerwood, L.G. et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat. Immunol.9, 42–53 (2008). CASPubMed Google Scholar
Martín-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med.198, 615–621 (2003). PubMedPubMed Central Google Scholar
Marttila-Ichihara, F. et al. Macrophage mannose receptor on lymphatics controls cell trafficking. Blood112, 64–72 (2008). CASPubMed Google Scholar
Salmi, M., Koskinen, K., Henttinen, T., Elima, K. & Jalkanen, S. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood104, 3849–3857 (2004). CASPubMed Google Scholar
Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science317, 666–670 (2007). CASPubMed Google Scholar
Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol.3, e113 (2005). PubMedPubMed Central Google Scholar
Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol.6, 205–217 (2006). CASPubMed Google Scholar
Kratz, A., Campos-Neto, A., Hanson, M.S. & Ruddle, N.H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med.183, 1461–1472 (1996). CASPubMed Google Scholar
Gal, I. et al. Visualization and in situ analysis of leukocyte trafficking into the ankle joint in a systemic murine model of rheumatoid arthritis. Arthritis Rheum.52, 3269–3278 (2005). PubMed Google Scholar
Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature423, 356–361 (2003). CASPubMed Google Scholar
Gressner, A.M. & Weiskirchen, R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J. Cell. Mol. Med.10, 76–99 (2006). CASPubMed Google Scholar
Camps, M. et al. Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med.11, 936–943 (2005). CASPubMed Google Scholar
Mathis, S., Jala, V.R. & Haribabu, B. Role of leukotriene B4 receptors in rheumatoid arthritis. Autoimmun. Rev.7, 12–17 (2007). CASPubMedPubMed Central Google Scholar
Boissonnas, A., Fetler, L., Zeelenberg, I.S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med.204, 345–356 (2007). CASPubMedPubMed Central Google Scholar
Breart, B., Lemaitre, F., Celli, S. & Bousso, P. Two-photon imaging of intratumoral CD8 T cell cytotoxic activity during adoptive T cell therapy in mice. J. Clin. Invest.118, 1390–1397 (2008). CASPubMedPubMed Central Google Scholar
Jaaskelainen, J. et al. Migration of recombinant IL-2-activated T and natural killer cells in the intercellular space of human H-2 glioma spheroids in vitro. A study on adhesion molecules involved. J. Immunol.149, 260–268 (1992). CASPubMed Google Scholar
O'Hayre, M., Salanga, C.L., Handel, T.M. & Allen, S.J. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem. J.409, 635–649 (2008). CASPubMed Google Scholar
Silzle, T. et al. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur. J. Immunol.33, 1311–1320 (2003). CASPubMed Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). CASPubMed Google Scholar
Zhang, T. et al. CXC chemokine ligand 12 (stromal cell-derived factor 1 alpha) and CXCR4-dependent migration of CTLs toward melanoma cells in organotypic culture. J. Immunol.174, 5856–5863 (2005). CASPubMed Google Scholar
Zhang, B., Chan, Y.K., Lu, B., Diamond, M.S. & Klein, R.S. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J. Immunol.180, 2641–2649 (2008). CASPubMed Google Scholar
Brown, C.E. et al. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J. Immunol.179, 3332–3341 (2007). CASPubMed Google Scholar
Winter, H. et al. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines. J. Transl. Med.5, 56 (2007). PubMedPubMed Central Google Scholar
Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med.203, 2749–2761 (2006). CASPubMedPubMed Central Google Scholar
Kawakami, N. et al. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med.201, 1805–1814 (2005). CASPubMedPubMed Central Google Scholar
Le Floc'h, A. et al. αEβ7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J. Exp. Med.204, 559–570 (2007). CASPubMed Google Scholar
Thomsen, A.R., Nansen, A., Madsen, A.N., Bartholdy, C. & Christensen, J.P. Regulation of T cell migration during viral infection: role of adhesion molecules and chemokines. Immunol. Lett.85, 119–127 (2003). CASPubMed Google Scholar
Applegate, K.G., Balch, C.M. & Pellis, N.R. In vitro migration of lymphocytes through collagen matrix: arrested locomotion in tumor-infiltrating lymphocytes. Cancer Res.50, 7153–7158 (1990). CASPubMed Google Scholar
Mempel, T.R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity25, 129–141 (2006). CASPubMed Google Scholar
Warren, A. et al. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology44, 1182–1190 (2006). CASPubMed Google Scholar
Xu, X.D. et al. Trafficking of recirculating lymphocytes in the rat liver: rapid transmigration into the portal area and then to the hepatic lymph. Liver Int.28, 319–330 (2008). PubMed Google Scholar
Valiante, N.M. et al. Life, activation and death of intrahepatic lymphocytes in chronic hepatitis C. Immunol. Rev.174, 77–89 (2000). CASPubMed Google Scholar
Zeremski, M., Petrovic, L.M. & Talal, A.H. The role of chemokines as inflammatory mediators in chronic hepatitis C virus infection. J. Viral Hepat.14, 675–687 (2007). CASPubMed Google Scholar
Hokeness, K.L. et al. CXCR3-dependent recruitment of antigen-specific T lymphocytes to the liver during murine cytomegalovirus infection. J. Virol.81, 1241–1250 (2007). CASPubMed Google Scholar
Saunders, B.M. & Britton, W.J. Life and death in the granuloma: immunopathology of tuberculosis. Immunol. Cell Biol.85, 103–111 (2007). PubMed Google Scholar
Egen, J.G. et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity28, 271–284 (2008). CASPubMedPubMed Central Google Scholar
Ben-Chetrit, E., Bergmann, S. & Sood, R. Mechanism of the anti-inflammatory effect of colchicine in rheumatic diseases: a possible new outlook through microarray analysis. Rheumatology (Oxford)45, 274–282 (2006). CAS Google Scholar
Aiello, R.J. et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler. Thromb. Vasc. Biol.22, 443–449 (2002). CASPubMed Google Scholar
Chiba, K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol. Ther.108, 308–319 (2005). CASPubMed Google Scholar
Barber, D.F. et al. PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat. Med.11, 933–935 (2005). CASPubMed Google Scholar
Wenzel, J., Uerlich, M., Haller, O., Bieber, T. & Tueting, T. Enhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimod. J. Cutan. Pathol.32, 257–262 (2005). PubMed Google Scholar
Schon, M.P. & Schon, M. TLR7 and TLR8 as targets in cancer therapy. Oncogene27, 190–199 (2008). CASPubMed Google Scholar
Hauzenberger, D., Klominek, J. & Sundqvist, K.G. Functional specialization of fibronectin-binding beta 1-integrins in T lymphocyte migration. J. Immunol.153, 960–971 (1994). CASPubMed Google Scholar
Nemoto, E., Tada, H. & Shimauchi, H. Disruption of CD40/CD40 ligand interaction with cleavage of CD40 on human gingival fibroblasts by human leukocyte elastase resulting in down-regulation of chemokine production. J. Leukoc. Biol.72, 538–545 (2002). CASPubMed Google Scholar
Pasvolsky, R. et al. RhoA is involved in LFA-1 extension triggered by CXCL12 but not in a novel outside-in LFA-1 activation facilitated by CXCL9. J. Immunol.180, 2815–2823 (2008). CASPubMed Google Scholar
Van Vliet, E., Melis, M., Foidart, J.M. & Van Ewijk, W. Reticular fibroblasts in peripheral lymphoid organs identified by a monoclonal antibody. J. Histochem. Cytochem.34, 883–890 (1986). CASPubMed Google Scholar