Millard, P.J., Henkart, M.P., Reynolds, C.W. & Henkart, P.A. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J. Immunol.132, 3197–3204 (1984). CASPubMed Google Scholar
Podack, E.R., Young, J.D. & Cohn, Z.A. Isolation and biochemical and functional characterization of perforin from cytolytic T cell granules. Proc. Natl. Acad. Sci. USA82, 8629–8633 (1985). CASPubMedPubMed Central Google Scholar
Shinkai, Y., Takio, K. & Okumura, K. Homology of perforin to the ninth component of complement (C9). Nature334, 525–527 (1998). Google Scholar
Tschopp, J., Massom, D. & Stanley, K.K. Structural-functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature322, 831–834 (1986). CASPubMed Google Scholar
Sauer, H., Pratsch, L., Tschopp, J., Bhakdi, S. & Peters, R. Functional size of complement and perforin pores compared by confocal laser scanning microscopy and fluorescent microphotolysis. Biochim. Biophys. Acta1063, 137–146 (1991). CASPubMed Google Scholar
Henkart, M.P. & Henkart, P.A. Lymphocyte mediated cytolysis as a secretory phenomenon. Adv. Exp. Med. Biol.146, 227–247 (1982). CASPubMed Google Scholar
Lowin, B., Peitsch, M.C. & Tschopp, J. Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr. Top. Microbiol. Immunol.198, 1–24 (1995). CASPubMed Google Scholar
Shi, L., Kraut, R.P., Aebersold, R. & Greenberg, A.H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med.175, 553–566 (1992). CASPubMed Google Scholar
Heusel, J.W., Wesselschmidt, R.L., Shresta, S., Russell, J.H. & Ley, T.J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell76, 977–987 (1994). CASPubMed Google Scholar
Nakajima, H., Park, H.L. & Henkart, P.A. Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumours also expressing cytolysin/perforin. J. Exp. Med.181, 1037–1046 (1995). CASPubMed Google Scholar
Shiver, J.W. & Henkart, P.A. A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell64, 1175–1181 (1991). CASPubMed Google Scholar
Shiver, J.W., Su, L. & Henkart, P.A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell71, 315–322 (1992). CASPubMed Google Scholar
Barry, M. & Bleackley, R.C. Cytotoxic T lymphocytes: all roads lead to death. Nat. Rev. Immunol.2, 401–409 (2002). CASPubMed Google Scholar
Beresford, P.J. et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J. Biol. Chem.276, 43285–43293 (2001). CASPubMed Google Scholar
Fan, Z. et al. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat. Immunol.4, 145–153 (2003). CASPubMed Google Scholar
Froelich, C.J. et al. New paradigm for lymphocyte granule mediated cytotoxicity. Targets bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem.271, 29073–29079 (1996). CASPubMed Google Scholar
Motyka, B. et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell103, 491–500 (2000). CASPubMed Google Scholar
Browne, K.A. et al. Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell. Biol.19, 8604–8615 (1999). CASPubMedPubMed Central Google Scholar
Metkar, S.S. et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B–serglycin complexes into target cells without plasma membrane pore formation. Immunity16, 417–428 (2002). CASPubMed Google Scholar
Gartung, C., Braulke, T., Hasilik, A. & von Figura, K. Internalization of blocking antibodies against mannose-6-phosphate specific receptors. EMBO J.4, 1725–1730 (1985). CASPubMedPubMed Central Google Scholar
Gonzalez-Noriega, A., Grubb, J.H., Talkad, V. & Sly, W.S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell Biol.85, 839–852 (1980). CASPubMed Google Scholar
Kuta, A.E., Reynolds, C.R. & Henkart, P.A. Mechanisms of lysis by large granular lymphocyte granule cytolysin: generation of a stable cytolysin-RBC intermediate. J. Immunol.142, 4378–4384 (1989). CASPubMed Google Scholar
Uellner, R. et al. Perforin is activated by proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J.16, 7287–7296 (1997). CASPubMedPubMed Central Google Scholar
Winkler, U., Fraser, S.A. & Hudig, D. Perforin-enhancing protein, a low molecular weight protein of cytotoxic lymphocyte granules, enhances perforin lysis. Biochem. Biophys. Res. Commun.236, 34–39 (1997). CASPubMed Google Scholar
Sanderson, C.J. The mechanism of T cell mediated cytotoxicity. I. The release of different cell components. Proc. R. Soc. Lond. B192, 221–239 (1976). CASPubMed Google Scholar
Kupfer, A., Singer, S.J. & Dennert, G. On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J. Exp. Med.163, 489–498 (1986). CASPubMed Google Scholar
Balaji, K.N., Schaschke, N., Machleidt, W., Catalfamo, M. & Henkart, P.A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med.196, 493–503 (2002). CASPubMedPubMed Central Google Scholar
Kataoka, T. et al. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and γ-irradiation. J. Immunol.161, 3936–3942 (1998). CASPubMed Google Scholar
Hirst, C.E. et al. The intracellular Granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J. Immunol.170, 805–815 (2003). CASPubMed Google Scholar
Burkhardt, J.K., Hester, S., Lapham, C.K. & Argon, Y. The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol.111, 2327–2340 (1990). CASPubMed Google Scholar
Peters, P.J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med.173, 1099–1109 (1991). CASPubMed Google Scholar
Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol.95, 137–143 (1982). CASPubMed Google Scholar
Kupfer, A. & Dennert, G. Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J. Immunol.133, 2762–2766 (1984). CASPubMed Google Scholar
Kupfer, A., Dennert, G. & Singer, S.J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J. Mol. Cell. Immunol.2, 37–49 (1985). CASPubMed Google Scholar
Allan, V.J., Thompson, H.N. & McNiven, M.A. Motoring around the Golgi. Nat. Cell Biol.4, E236–E242 (2002). CASPubMed Google Scholar
Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15, 751–761 (2001). CASPubMed Google Scholar
van der Merwe, P.A. Formation and function of the immunological synapse. Curr. Opin. Immunol.14, 293–298 (2002). CASPubMed Google Scholar
Lyubchenko, T.A., Wurth, G.A. & Zweifach, A. Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity.15, 847–859 (2001). CASPubMed Google Scholar
Kuhn, J.R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity16, 111–121 (2002). CASPubMed Google Scholar
Perou, C.M. et al. Identification of the murine beige gene by YAC complementation and positional cloning. Nat. Genet.13, 303–308 (1996). CASPubMed Google Scholar
Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet.25, 173–176 (2000). CASPubMed Google Scholar
Wilson, S.M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. USA97, 7933–7938 (2000). CASPubMedPubMed Central Google Scholar
Detter, J.C. et al. Rab geranylgeranyl transferase α mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis Proc. Natl. Acad. Sci. USA97, 4144–4149 (2000). CASPubMedPubMed Central Google Scholar
Stepp, S.E. et al. Perforin gene defects in familial haemophagocytic lymphohistiocytosis. Science286, 1957–1959 (1999). CASPubMed Google Scholar
Griffiths, G.M. Albinism and immunity: what's the link? Curr. Mol. Med.2, 479–483 (2002). CASPubMed Google Scholar
Haddad, E.K., Wu, X., Hammer, J.A. & Henkart, P.A. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J. Cell Biol.152, 835–842 (2001). CASPubMedPubMed Central Google Scholar
Stinchcombe, J.C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol.152, 825–834 (2001). CASPubMedPubMed Central Google Scholar
Hume, A.N. et al. Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J. Cell Biol.152, 795–808 (2001). CASPubMedPubMed Central Google Scholar
Wu, X., Wang, F., Rao, K., Sellers, J.R. & Hammer, J.A. Rab27a is an essential component of melanosome receptor for myosin Va. Mol. Biol. Cell.13, 1735–1749 (2002). CASPubMedPubMed Central Google Scholar
Pastural, E. et al. Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics63, 299–306 (2000). CASPubMed Google Scholar
Hume, A.N. et al. The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic3, 193–202 (2002). CASPubMed Google Scholar
Fukuda, M., Kuroda, T.S. & Mikoshiba, K. Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J. Biol. Chem.277, 12432–12436 (2002). CASPubMed Google Scholar
Kuroda, T.S., Fukuda, M., Ariga, H. & Mikoshiba, K. Synaptotagmin-like protein 5: a novel Rab27A effector with C-terminal tandem C2 domains. Biochem. Biophys. Res. Commun.293, 899–906 (2002). CASPubMed Google Scholar
Strom, M., Hume, A.N., Tarafder, A.K., Barkagianni, E. & Seabra, M.C. A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J. Biol. Chem.277, 25423–25430 (2002). CASPubMed Google Scholar
Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science.279, 580–585 (1998). CASPubMed Google Scholar
Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol.11, 1680–1685 (2001). CASPubMed Google Scholar
Lebrand, C. et al. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J.21, 1289–300 (2002). CASPubMedPubMed Central Google Scholar
Ward, D.M., Griffiths, G.M., Stinchcombe, J.C. & Kaplan, J. Analysis of the lysosomal storage disease Chediak-Higashi syndrome. Traffic1, 816–822 (2000). CASPubMed Google Scholar
Baetz, K., Isaaz, S. & Griffiths, G.M. Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J. Immunol.154, 6122–6131 (1995). CASPubMed Google Scholar
Barbosa, M.D. et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature382, 262–265 (1996). CASPubMedPubMed Central Google Scholar
Stinchcombe, J.C., Page, L.J. & Griffiths, G.M. Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak-Higashi syndrome patients. Traffic1, 435–444 (2000). CASPubMed Google Scholar
Tchernev, V.T. et al. The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins. Mol. Med.8, 56–64 (2002). CASPubMedPubMed Central Google Scholar
de Saint Basile, G. & Fischer, A. The role of cytotoxicity in lymphocyte homeostasis. Curr. Opin. Immunol.13, 549–554 (2001). CASPubMed Google Scholar
Arico, M. et al. Haemophagocytic lymphohistiocytosis: proposal of a diagnostic algorithm based on perforin expression. Br. J. Haematol.119, 180–188 (2002). PubMed Google Scholar
Feldmann, J. et al. Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br. J. Haematol.111, 965–972 (2002). Google Scholar
Goransdotter Ericson, K. et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am J. Hum. Genet.68, 590–597 (2001). CASPubMedPubMed Central Google Scholar
Suga, N. et al. Perforin defects of primary haemophagocytic lymphohistiocytosis in Japan. Br. J. Haematol.116, 346–349 (2002). CASPubMed Google Scholar
Lacorazza, H.D. et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity17, 437–449 (2002). CASPubMed Google Scholar
Stepp, S.E., Mathew, P.A., Bennett, M., de Saint-Basile, G. & Kumar, V. Perforin: more than just an effector molecule. Immunol. Today21, 254–256 (2000). CASPubMed Google Scholar
Moretta, L., Moretta, A., Hengartner, H. & Zinkernagel, R.M. On the pathogenesis of perforin defects and related immunodeficiencies. Immunol. Today21, 593–594 (2000). CASPubMed Google Scholar
Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R.M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol.14, 207–232 (1996). CASPubMed Google Scholar
Lowin, B., Hahne, M., Mattman, C. & Tschopp, J. Cytolytic T cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature370, 650–652 (1994). CASPubMed Google Scholar
Walsh, C.M. et al. Immune function in mice lacking the perforin gene. Proc. Natl. Acad. Sci. USA91, 10854–10858 (1994). CASPubMedPubMed Central Google Scholar
Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol.73, 2527–2536 (1999). CASPubMedPubMed Central Google Scholar
Kagi, D., Odermatt, B. & Mak T.W. Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol.29, 3262–3272 (1999). CASPubMed Google Scholar
Walden, P.R. & Eisen, H.N. Cognate peptides induce self-destruction of CD8+ cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA87, 9015–9019 (1990). CASPubMedPubMed Central Google Scholar
Huang, J.F. et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science286, 952–954 (1999). CASPubMed Google Scholar
Hwang, I. et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalise cell surface molecules derived from antigen-presenting cells. J. Exp. Med.191, 1137–1148 (2000). CASPubMedPubMed Central Google Scholar
Batista, F.D., Iber, D. & Neuberger, M.S. B cells acquire antigen from target cells after synapse formation. Nature411, 489–494 (2001). CASPubMed Google Scholar
Carlin, L.M., Eleme, K., McCann, F.E. & Davis, D.M. Intercellular transfer and supramolecular organization of human leucocyte antigen C at inhibitory natural killer cell immune synapses. J. Exp. Med.194, 1507–17 (2001). CASPubMedPubMed Central Google Scholar
Sjostrom, A. et al. Acquisition of external major histocompatibility complex class I molecules by natural killer cells expressing inhibitory Ly49 receptors. J. Exp Med.194, 1519–1530 (2001). CASPubMedPubMed Central Google Scholar
Tabiasco, J. et al. Active trans-synaptic capture of membrane fragments by natural killer cells. Eur. J. Immunol.32, 1502–1508 (2002). CASPubMed Google Scholar
Espinosa, E., Tabiasco, J., Hudrisier, D. & Fournie, J.J. Synaptic transfer by human gamma delta T cells stimulated with soluble or cellular antigens. J. Immunol.168, 6336–6343 (2002). CASPubMed Google Scholar
Hudrisier, D., Riond, J., Mazarguil, H., Gairin, J.E. & Jolly, E. Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR-signaling dependent manner. J. Immunol.166, 3645–3649 (2001). CASPubMed Google Scholar