Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA (original) (raw)
Sartor, R.B. The influence of normal microbial flora on the development of chronic inflammation. Res. Immunol.148, 567–576 (1997). ArticleCAS Google Scholar
Rembacken, B.J. et al. Non-pathogenic E. coli versus mesalazine for the treament of ulcerative colitis: a randomised trial. Lancet354, 635–639 (1999) ArticleCAS Google Scholar
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10 deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993). ArticleCAS Google Scholar
Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R.L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic T-cell immunity. J. Exp. Med.179, 589–600 (1994). ArticleCAS Google Scholar
Campieri, M. & Gionchetti, P. Probiotics in inflammatory bowel disease: new insight to pathogenesis or possible therapeutic alternative. Gastroenterol.116, 1246–1249 (1999). ArticleCAS Google Scholar
Marteau, P.R., de Vrese, M., Cellier, C.J. & Schrezenmeir, J. Protection from gastrointestinal diseases with the use of probiotics. Am. J. Clin. Nutr.73, 430S–436S (2001). ArticleCAS Google Scholar
Cario, E. et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol.164, 966–972 (2000). ArticleCAS Google Scholar
Cong, Y., Weaver, C.T., Lazenby, A. & Elson, C.O. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J. Immunol.169, 6112–6119 (2002). ArticleCAS Google Scholar
Neish, A.S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science289, 1560–1563 (2000). ArticleCAS Google Scholar
Kelly, D. & Conway, S. Genomics at work: the global gene response to enteric bacteria. Gut49, 612–613 (2001). ArticleCAS Google Scholar
McCormick, B.A., Colgan, S.P., Delp-Archer, C., Miller, S.I. & Madara, J.L. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell Biol.123, 895–907 (1993). ArticleCAS Google Scholar
Hang, L. et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol.162, 3037–3044 (1999). CASPubMed Google Scholar
Ghosh, S., May, M.J. & Kopp, E.B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260 (1998). CAS Google Scholar
May, M.J. & Ghosh, S. Signal transduction through NF-κB. Immunol. Today19, 80–88 (1998). ArticleCAS Google Scholar
Schesser, K. et al. The YopJ locus is required for Yersinia-mediated inhibition of NF-κB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol.28, 1067–1079 (1998). ArticleCAS Google Scholar
Cheng, Q. et al. NF-κB subunit-specific regulation of the IκBα promoter. J. Biol. Chem.269, 13551–13557 (1994). CASPubMed Google Scholar
Chiao, P.J., Miyamoto, S. & Verma, I.M. Autoregulation of IκBα activity. Proc. Natl. Acad. Sci. USA91, 28–32 (1994). ArticleCAS Google Scholar
Haller, D. et al. TGFβ-1 inhibits non-pathogenic Gram negative bacteria-induced NF-κB recruitment to the IL-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J. Biol. Chem.278, 23851–23860 (2003). ArticleCAS Google Scholar
Chen, L-f., Fischle, W., Verdin, E. & Greene, W.C. Duration of NF-κB action regulated by reversible acetylation. Science293, 1653–1657 (2001). ArticleCAS Google Scholar
Huang, T.T., Kudo, N., Yoshida, M. & Miyamoto, S. A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localisation of inactive NF-κB/IκBα complexes. Proc. Natl. Acad. Sci. USA97, 1014–1019 (2000). ArticleCAS Google Scholar
Kudo, H. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci.USA96, 9112–9117 (1999). ArticleCAS Google Scholar
Su, C.G. et al. A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J. Clin. Invest.104, 383–389 (1999). ArticleCAS Google Scholar
Nakajima, A. et al. Endogenous PPARγ mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterol.120, 460–469 (2001). ArticleCAS Google Scholar
Wang, N. et al. Constitutive activation of peroxisome proliferator-activated receptor-γ suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J. Biol. Chem.277, 34176–34181 (2002). ArticleCAS Google Scholar
Katayama, K. et al. A novel PPARγ gene therapy to control inflammation associated with inflammatory bowel disease in a murine model. Gastroenterol.124, 1315–1324 (2003). ArticleCAS Google Scholar
Chawla, K. et al. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat. Med.7, 48–52 (2001). ArticleCAS Google Scholar
Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature403, 103–108 (2000). ArticleCAS Google Scholar
Straus, D.S. et al. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. PNAS, 97, 4844–4849 (2000). ArticleCAS Google Scholar
Bunn, C.F. et al. Nucleocytoplasmic shuttling of the thyroid hormone receptor α. Mol. Endocrinol.15, 512–533 (2001). CASPubMed Google Scholar
Ricote, M., Huang, J.T., Welch, J.S. & Glass, C.K. The peroxisome proliferator-activated receptorγ (PPARγ) as a regulator of monocyte/macrophage function. J. Leukoc. Biol.66, 733–739 (1999). ArticleCAS Google Scholar
Chung, S.W. et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB. J. Biol. Chem.275, 32681–32687 (2000). ArticleCAS Google Scholar
Gurnell, M. et al. A dominant-negative peroxisome proliferator-activated receptor γ (PPARγ) mutant is a constitutive repressor and inhibits PPARγ-mediated adipogenesis. J. Biol. Chem.275, 5754–5759 (2000). ArticleCAS Google Scholar
Suzawa et al. Cytokines suppress adipogenesis and PPARγ function through the TAK1/TAB1/NIK cascade. Nature Cell Biol.5, 224–230 (2003). ArticleCAS Google Scholar
Schmid, J.A. et al. Dynamics of NF-κB and IκBα studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNA by fluorescence resonance energy transfer. J. Biol. Chem.275, 17035–17042 (2000). ArticleCAS Google Scholar
Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell109, S81–S96 (2002). ArticleCAS Google Scholar
Tam, W.F. & Sen, R. IκB family members function by different mechanisms. J. Biol. Chem.276, 7701–7704 (2001). ArticleCAS Google Scholar
Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleCAS Google Scholar
Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA99, 5515–5520 (2002). ArticleCAS Google Scholar
Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J. & Madara, J.L. Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol.167, 1882–1885 (2001). ArticleCAS Google Scholar
De Winter, H. et al. Regulation of mucosal immune responses by interleukin 10 produced by intestinal epithelial cells in mice. Gastroenterol.122, 1829–1841 (2002). ArticleCAS Google Scholar
Di Leo, V., Yang, P.C., Berin, M.C. & Perdue, M.H. Factors regulating the effect of IL-4 on intestinal epithelial barrier function. Int. Arch. Allergy Immunol.129, 219–227 (2002). ArticleCAS Google Scholar
Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbosis. Science299, 2074–2076 (2003). ArticleCAS Google Scholar
Parkos, C.A., Delp, C., Arnaout, M.A. & Madara, J.L. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J. Clin. Invest.88, 1605–1612 (1991). ArticleCAS Google Scholar