53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination (original) (raw)
van Gent, D.C., Hoeijmakers, J.H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet.2, 196–206 (2001). ArticleCAS Google Scholar
Mills, K.D., Ferguson, D.O. & Alt, F.W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev.194, 77–95 (2003). ArticleCAS Google Scholar
Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis23, 687–696 (2002). ArticleCAS Google Scholar
Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell109, S45–S55 (2002). ArticleCAS Google Scholar
Manis, J.P., Tian, M. & Alt, F.W. Mechanism and control of class-switch recombination. Trends Immunol.23, 31–39 (2002). ArticleCAS Google Scholar
Jung, D. & Alt, F.W. Unraveling V(D)J recombination: Insights into gene regulation. Cell116, 299–311 (2004). ArticleCAS Google Scholar
Storb, U. & Stavnezer, J. Immunoglobulin genes: generating diversity with AID and UNG. Curr. Biol.12, 725–727 (2002). Article Google Scholar
Papavasiliou, F.N. & Schatz, D.G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell109, S35–44 (2002). ArticleCAS Google Scholar
Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell102, 565–575 (2000). ArticleCAS Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000). ArticleCAS Google Scholar
Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature422, 726–730 (2003). ArticleCAS Google Scholar
Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol.4, 452–456 (2003). ArticleCAS Google Scholar
Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA100, 4102–4107 (2003). ArticleCAS Google Scholar
Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med.197, 1291–1296 (2003). ArticleCAS Google Scholar
Neuberger, M.S., Harris, R.S., Di Noia, J. & Petersen-Mahrt, S.K. Immunity through DNA deamination. Trends Biochem. Sci.28, 305–312 (2003). ArticleCAS Google Scholar
Li, Z., Woo, C.J., Iglesias-Ussel, M.D., Ronai, D. & Scharff, M.D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev.18, 1–11 (2004). Article Google Scholar
Chua, K.F., Alt, F.W. & Manis, J.P. The function of AID in somatic mutation and class switch recombination: upstream or downstream of DNA breaks. J. Exp. Med.195, F37–41 (2002). ArticleCAS Google Scholar
Reynaud, C.A., Aoufouchi, S., Faili, A. & Weill, J.C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat. Immunol.4, 631–638 (2003). ArticleCAS Google Scholar
Zhou, B.B. & Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature408, 433–439 (2000). ArticleCAS Google Scholar
Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev.15, 2177–2196 (2001). ArticleCAS Google Scholar
Xia, Z., Morales, J.C., Dunphy, W.G. & Carpenter, P.B. Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J. Biol. Chem.276, 2708–2718 (2001). ArticleCAS Google Scholar
Schultz, L.B., Chehab, N.H., Malikzay, A. & Halazonetis, T.D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell. Biol.151, 1381–1390 (2000). ArticleCAS Google Scholar
Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell. Biol.21, 1719–1729 (2001). ArticleCAS Google Scholar
Rappold, I., Iwabuchi, K., Date, T. & Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol.153, 613–620 (2001). ArticleCAS Google Scholar
Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem.273, 5858–5868 (1998). ArticleCAS Google Scholar
Morales, J.C. et al. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J. Biol. Chem.278, 14971–14977 (2003). ArticleCAS Google Scholar
Ward, I.M., Minn, K., van Deursen, J. & Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell. Biol.23, 2556–2563 (2003). ArticleCAS Google Scholar
Chu, C.C., Max, E.E. & Paul, W.E. DNA rearrangement can account for in vitro switching to IgG1. J. Exp. Med.178, 1381–1390 (1993). ArticleCAS Google Scholar
Lutzker, S. & Alt, F.W. Structure and expression of germ line immunoglobulin γ2b transcripts. Mol. Cell. Biol.8, 1849–1852 (1988). ArticleCAS Google Scholar
Yu, K. & Lieber, M.R. Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair (Amst)2, 1163–1174 (2003). ArticleCAS Google Scholar
Hodgkin, P.D., Lee, J.H. & Lyons, A.B. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med.184, 277–281 (1996). ArticleCAS Google Scholar
Jolly, C.J., Klix, N. & Neuberger, M.S. Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice. Nucleic Acids Res.25, 1913–1919 (1997). ArticleCAS Google Scholar
Iwabuchi, K. et al. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J. Biol. Chem.278, 36487–36495 (2003). ArticleCAS Google Scholar
Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev.10, 2411–2422 (1996). ArticleCAS Google Scholar
Manis, J.P., Dudley, D., Kaylor, L. & Alt, F.W. IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity16, 607–617 (2002). ArticleCAS Google Scholar
Bosma, G.C. et al. DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J. Exp. Med.196, 1483–1495 (2002). ArticleCAS Google Scholar
Cook, A.J. et al. Reduced switching in SCID B cells is associated with altered somatic mutation of recombined S regions. J. Immunol.171, 6556–6564 (2003). ArticleCAS Google Scholar
Fernandez-Capetillo, O. et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat. Cell Biol.4, 993–997 (2002). ArticleCAS Google Scholar
Wang, B., Matsuoka, S., Carpenter, P.B. & Elledge, S.J. 53BP1, a mediator of the DNA damage checkpoint. Science298, 1435–1438 (2002). ArticleCAS Google Scholar
DiTullio, R.A., Jr. et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat. Cell. Biol.4, 998–1002 (2002). ArticleCAS Google Scholar
Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature414, 660–665 (2001). ArticleCAS Google Scholar
Bassing, C.H. et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. USA99, 8173–8178 (2002). ArticleCAS Google Scholar
Reina-San-Martin, B. et al. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med.197, 1767–1778 (2003). ArticleCAS Google Scholar
Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science296, 922–927 (2002). ArticleCAS Google Scholar
Bassing, C.H. & Alt, F.W. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle3, e119–e123 (2004). Article Google Scholar
Li, Y.S., Hayakawa, K. & Hardy, R.R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med.178, 951–960 (1993). ArticleCAS Google Scholar
Ehrenstein, M.R. & Neuberger, M.S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J.18, 3484–3490 (1999). ArticleCAS Google Scholar
Casola, S. et al. B cell receptor signal strength determines B cell fate. Nat. Immunol.5, 317–327 (2004). ArticleCAS Google Scholar