- Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).
Article CAS PubMed Google Scholar
- Matsuoka, M., Yoshida, K., Maeda, T., Usuda, S. & Sakano, H. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 62, 135–142 (1990).
Article CAS PubMed Google Scholar
- Iwasato, T., Shimizu, A., Honjo, T. & Yamagishi, H. Circular DNA is excised by immunoglobulin class switch recombination. Cell 62, 143–149 (1990).
Article CAS PubMed Google Scholar
- von Schwedler, U., Jack, H.M. & Wabl, M. Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature 345, 452–456 (1990).
Article CAS PubMed Google Scholar
- Rolink, A., Melchers, F. & Andersson, J. The SCID but not the RAG-2 gene product is required for Sμ-S epsilon heavy chain class switching. Immunity 5, 319–330 (1996).
Article CAS PubMed Google Scholar
- Manis, J.P. et al. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J. Exp. Med. 187, 2081–2089 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Casellas, R. et al. Ku80 is required for immunoglobulin isotype switching. EMBO J. 17, 2404–2411 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).
Article CAS PubMed Google Scholar
- Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).
Article CAS PubMed Google Scholar
- Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).
Article CAS PubMed Google Scholar
- Arakawa, H., Hauschild, J. & Buerstedde, J.M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).
Article CAS PubMed Google Scholar
- Harris, R.S., Sale, J.E., Petersen-Mahrt, S.K. & Neuberger, M.S. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12, 435–438 (2002).
Article CAS PubMed Google Scholar
- Okazaki, I.M., Kinoshita, K., Muramatsu, M., Yoshikawa, K. & Honjo, T. The AID enzyme induces class switch recombination in fibroblasts. Nature 416, 340–345 (2002).
Article CAS PubMed Google Scholar
- Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).
Article CAS PubMed Google Scholar
- Martin, A. et al. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802–806 (2002).
Article CAS PubMed Google Scholar
- Teng, B., Burant, C.F. & Davidson, N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).
Article CAS PubMed Google Scholar
- Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).
Article CAS PubMed Google Scholar
- Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).
Article CAS PubMed Google Scholar
- Faili, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase ι. Nature 419, 944–947 (2002).
Article CAS PubMed Google Scholar
- Zeng, X. et al. DNA polymerase ε is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat. Immunol. 2, 537–541 (2001).
Article CAS PubMed Google Scholar
- Rogozin, I.B., Pavlov, Y.I., Bebenek, K., Matsuda, T. & Kunkel, T.A. Somatic mutation hotspots correlate with DNA polymerase ε error spectrum. Nat. Immunol. 2, 530–536 (2001).
Article CAS PubMed Google Scholar
- Zan, H. et al. The translesion DNA polymerase ζ plays a major role in Ig and Bcl-6 somatic hypermutation. Immunity 14, 643–653 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M.D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Schrader, C.E., Edelmann, W., Kucherlapati, R. & Stavnezer, J. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes. J. Exp. Med. 190, 323–330 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Rada, C., Ehrenstein, M.R., Neuberger, M.S. & Milstein, C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).
Article CAS PubMed Google Scholar
- Kim, N., Bozek, G., Lo, J.C. & Storb, U. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. J. Exp. Med. 190, 21–30 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Goyenechea, B. et al. Cells strongly expressing Igκ transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J. 16, 3987–3994 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).
Article CAS PubMed Google Scholar
- Fukita, Y., Jacobs, H. & Rajewsky, K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9, 105–114 (1998).
Article CAS PubMed Google Scholar
- Stavnezer, J. Immunoglobulin class switching. Curr. Opin. Immunol. 8, 199–205 (1996).
Article CAS PubMed Google Scholar
- Stavnezer-Nordgren, J. & Sirlin, S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5, 95–102 (1986).
Article CAS PubMed PubMed Central Google Scholar
- Yancopoulos, G.D. et al. Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 5, 3259–3266 (1986).
Article CAS PubMed PubMed Central Google Scholar
- Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP–mediated gene targeting. Cell 73, 1155–1164 (1993).
Article CAS PubMed Google Scholar
- Jung, S., Rajewsky, K. & Radbruch, A. Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987 (1993).
Article CAS PubMed Google Scholar
- Pinaud, E. et al. Localization of the 3′ IgH locus elements that effect long-distance regulation of class switch recombination. Immunity 15, 187–199 (2001).
Article CAS PubMed Google Scholar
- Lee, C.G. et al. Quantitative regulation of class switch recombination by switch region transcription. J. Exp. Med. 194, 365–374 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M. & Olsson, C. Increased transcription levels induce higher mutation rates in a hypermutating cell line. J. Immunol. 166, 5051–5057 (2001).
Article CAS PubMed Google Scholar
- Betz, A.G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).
Article CAS PubMed Google Scholar
- Zhang, J., Bottaro, A., Li, S., Stewart, V. & Alt, F.W. A selective defect in IgG2b switching as a result of targeted mutation of the Iγ2b promoter and exon. EMBO J. 12, 3529–3537 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell. 10, 1247–1253 (2002).
Article CAS PubMed Google Scholar
- Kane, J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 494–500 (1995).
Article CAS PubMed Google Scholar
- Beletskii, A. & Bhagwat, A.S. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 13919–13924 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Lebecque, S.G. & Gearhart, P.J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).
Article CAS PubMed Google Scholar
- Both, G.W., Taylor, L., Pollard, J.W. & Steele, E.J. Distribution of mutations around rearranged heavy-chain antibody variable-region genes. Mol. Cell. Biol. 10, 5187–5196 (1990).
Article CAS PubMed PubMed Central Google Scholar
- Yelamos, J. et al. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature 376, 225–229 (1995).
Article CAS PubMed Google Scholar
- Azuma, T., Motoyama, N., Fields, L.E. & Loh, D.Y. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. Int. Immunol. 5, 121–130 (1993).
Article CAS PubMed Google Scholar
- Storb, U. & Stavnezer, J. Immunoglobulin genes: generating diversity with AID and UNG. Curr. Biol. 12, R725–R727 (2002).
Article CAS PubMed Google Scholar
- Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).
Article CAS PubMed Google Scholar
- Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).
Article CAS PubMed Google Scholar
- Rogozin, I.B. & Kolchanov, N.A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).
Article CAS PubMed Google Scholar
- Kogoma, T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61, 212–238 (1997).
CAS PubMed PubMed Central Google Scholar
- Tian, M. & Alt, F.W. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J. Biol. Chem. 275, 24163–24172 (2000).
Article CAS PubMed Google Scholar
- Korzheva, N. et al. A structural model of transcription elongation. Science 289, 619–625 (2000).
Article CAS PubMed Google Scholar
- Darst, S.A. Bacterial RNA polymerase. Curr. Opin. Struct. Biol. 11, 155–162 (2001).
Article CAS PubMed Google Scholar
- Wang, D. & Landick, R. Nuclease cleavage of the upstream half of the nontemplate strand DNA in an Escherichia coli transcription elongation complex causes upstream translocation and transcriptional arrest. J. Biol. Chem. 272, 5989–5994 (1997).
Article CAS PubMed Google Scholar
- Artsimovitch, I. & Landick, R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109, 193–203 (2002).
Article CAS PubMed Google Scholar
- Espeli, O., Moulin, L. & Boccard, F. Transcription attenuation associated with bacterial repetitive extragenic BIME elements. J. Mol. Biol. 314, 375–386 (2001).
Article CAS PubMed Google Scholar