- Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immun. 13, 61–92 (1995).
Article CAS Google Scholar
- Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).
Article CAS Google Scholar
- Salzman, N.H., Ghosh, D., Huttner, K.M., Paterson, Y. & Bevins, C.L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).
Article CAS Google Scholar
- Pütsep, K., Carlsson, G., Boman, H.G. & Andersson, M. Deficiency of antibacterial peptides in patients with morbus Kostman: an observation study. Lancet 360, 1144–1149 (2002).
Article Google Scholar
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002)
Article CAS Google Scholar
- Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).
Article CAS Google Scholar
- Selsted, M.E. & Harwig, S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J. Biol. Chem. 264, 4003–4007 (1989).
CAS PubMed Google Scholar
- Bevins, C.L., Martin-Porter, E. & Ganz, T. Defensins and innate host defence of the gastrointestinal tract. Gut 45, 911–915 (1999).
Article CAS Google Scholar
- Huttner, K.M., Selsted, M.E. & Ouellette, A.J. Structure and diversity of the murine cryptdin gene family. Genomics 19, 448–453 (1994).
Article CAS Google Scholar
- Selsted, M.E., Miller, S.I., Henschen, A.H. & Ouellette, A.J. Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol. 118, 929–936 (1992).
Article CAS Google Scholar
- Ouellette, A.J. et al. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect. Immun. 62, 5040–5047 (1994).
CAS PubMed PubMed Central Google Scholar
- Wilson, C.L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).
Article CAS Google Scholar
- Pütsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem. 275, 40478–40482 (2000).
Article Google Scholar
- Ouellette, A.J. & Lualdi, J.C. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J. Biol. Chem. 265, 9831–9837 (1990).
CAS PubMed Google Scholar
- Huttner, K.M. & Ouellette, A.J. A family of defensin-like genes codes for diverse cysteine-rich peptides in mouse Paneth cells. Genomics 24, 99–109 (1994).
Article CAS Google Scholar
- Turner, J., Cho, Y., Dinh, N.N., Waring, A.J. & Lehrer, R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 42, 2206–2214 (1998).
Article CAS Google Scholar
- Hultmark, D. et al. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 2, 571–576 (1983).
Article CAS Google Scholar
- Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977)
Article CAS Google Scholar
- Porter, E.M., Bevins, C.L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156–170 (2002).
Article CAS Google Scholar
- Ouellette, A.J. & Bevins, C.L. Paneth cell defensins and innate immunity of the small bowel. Inflamm. Bowel Dis. 7, 43–50 (2001).
Article CAS Google Scholar
- Ghosh, D. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat. Immunol. 3, 583–90 (2002).
Article CAS Google Scholar
- Ayabe, T. et al. Activation of Paneth cell α-defensins in mouse small intestine. J. Biol. Chem. 277, 5219–5228 (2002)
Article CAS Google Scholar
- Darmoul, D., Brown, D., Selsted, M.E. & Ouellette, A.J. Cryptdin gene expression in developing mouse small intestine. Am. J. Physiol. 272, G197–206 (1997).
CAS PubMed Google Scholar
- Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118 (2000).
Article CAS Google Scholar
- Hooper, L.V., Stappenbeck, T.S., Hong, C.V. & Gordon, J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 3, 269–273 (2003)
Article Google Scholar
- Hornef, M.W., Frisan, T., Normark, S. & Richter-Dahlfors, A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J. Exp. Med. 165, 559–570 (2002).
Article Google Scholar
- Ortega-Cava, C.F. et al. Strategic compartmentalization of toll-like receptor 4 in the mouse gut. J. Immunol. 170, 3977–3985 (2003).
Article CAS Google Scholar
- Wehkamp, J. et al. Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 9, 215–23 (2003).
Article Google Scholar
- Beck, D.C. et al. The role of homodimers in surfactant protein B function in vivo. J. Biol. Chem. 275, 3365–3370 (2000).
Article CAS Google Scholar
- Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers (Peptide Science) 66, 236–248 (2002).
Article CAS Google Scholar
- Matsuzaki, K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta. 1462, 1–10 (1999).
Article CAS Google Scholar
- Hristova, K., Selsted, M.E. & White, S.H. Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry 35, 11888–11894 (1996).
Article CAS Google Scholar
- Hill, C.P., Yee, J., Selsted, M.E. & Eisenberg, D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251, 1481–1485 (1991).
Article CAS Google Scholar
- Zhang, X.L., Selsted, M.E. & Pardi, A. NMR studies of defensin antimicrobial peptides. 1. Resonance assignment and secondary structure determination of rabbit NP-2 and human HNP-1. Biochemistry 31, 11348–11356 (1992).
Article CAS Google Scholar
- Schibli, D.J. et al. The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J. Biol. Chem. 277, 8279–8289 (2002).
Article CAS Google Scholar
- Dempsey, C.E., Ueno, S. & Avison, M.B. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42, 402–409 (2003).
Article CAS Google Scholar
- Yomogida, S., Nagaoka, I. & Yamashita, T. Purification of the 11- and 5-kDa antibacterial polypeptides from guinea pig neutrophils. Arch. Biochem. Biophys. 328, 219–226 (1996).
Article CAS Google Scholar
- Batista, C.V. et al. A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett. 494, 85–89 (2001).
Article CAS Google Scholar
- Holmgren, A. & Björnstedt, M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 252, 199–208 (1995).
Article CAS Google Scholar
- Bens, M. et al. Transimmortalized mouse intestinal cells (m-ICc12) that maintain a crypt phenotype. Am. J. Physiol. 270, C1666–C1674 (1996).
Article CAS Google Scholar